• Previous Article
    Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains
  • CPAA Home
  • This Issue
  • Next Article
    Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant
March  2012, 11(2): 465-473. doi: 10.3934/cpaa.2012.11.465

Lyapunov-type inequalities for even order differential equations

1. 

School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, China

Received  January 2011 Revised  May 2011 Published  October 2011

In this paper, we establish several new Lyapunov-type inequalities for the $2n-$order differential equation

$x^{(2n)}(t)+(-1)^{n-1}q(t)x(t)=0, $

which are sharper than all related existing ones.

Citation: Xiaofei He, X. H. Tang. Lyapunov-type inequalities for even order differential equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 465-473. doi: 10.3934/cpaa.2012.11.465
References:
[1]

S. S. Cheng, A discrete analogue of the inequality of Lyapunov,, Hokkaido Math. J., 12 (1983), 105. doi: /327/1/HMJ12-105.

[2]

S. S. Cheng, Lyapunov inequalities for differential and difference equations,, Hokkaido Math. Fasc. Math., 23 (1991), 25.

[3]

D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations,, Appl. Math. Comput., 216 (2010), 368. doi: 10.1016/j.amc.2010.01.010.

[4]

K. M. Das and A. S. Vatsala, Green's function for n-n boundary value problemand an analogue of Hartman's result,, J. Math. Anal. Appl., 51 (1975), 670. doi: 10.1016/0022-247X(75)90117-1.

[5]

S. B. Eliason, A Lyapunov inequality for a certain second order nonlinear differential equation,, J. London Math. Soc., 2 (1970), 461.

[6]

S. B. Eliason, Lyapunov type inequalities for certain second order functional differential equations,, SIAM J. Appl. Math., 27 (1974), 180. doi: 10.1137/0127015.

[7]

G. Sh. Guseinov and B. Kaymakcalan, Lyapunov inequalities for discrete linear Hamiltonian systems,, Comput. Math. Appl., 45 (2003), 1399. doi: 10.1016/S0898-1221(03)00095-6.

[8]

G. Sh. Guseinov and A. Zafer, Stability criteria for linear periodic impulsive Hamiltonian systems,, J. Math. Anal. Appl., 335 (2007), 1195. doi: 10.1016/j.jmaa.2007.01.095.

[9]

P. Hartman and A. Wintner, On an oscillation criterion of Lyapunov,, Amer. J. Math., 73 (1951), 885. doi: jstor.org/stable/2372122.

[10]

H. Hochstadt, A new proof of a stability estimate of Lyapunov,, Proc. Amer. Math. Soc., 14 (1963), 525. doi: 10.1090/S0002-9939-1963-0149019-6.

[11]

L. Q. Jiang and Z. Zhou, Lyapunov inequality for linear Hamiltonian systems on time scales,, J. Math. Anal. Appl., 310 (2005), 579. doi: 10.1016/j.jmaa.2005.02.026.

[12]

M. K. Kwong, On Lyapunov's inequality for disfocality,, J. Math. Anal. Appl., 83 (1981), 486. doi: 10.1016/0022-247X(81)90137-2.

[13]

C. Lee, C. Yeh, C. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities,, Appl. Math. Lett., 17 (2004), 847. doi: 10.1016/j.aml.2004.06.016.

[14]

A. M. Liapunov, Problème général de la stabilité du mouvement,, Fac. Sci. Univ. Toulouse., 2 (1907), 203.

[15]

Z. Nehari, Some eigenvalue estimates,, J. D'analyse Math., 7 (1959), 79. doi: 10.1007/BF02787681.

[16]

Z. Nehari, "On an inequality of Lyapunov, Studies in Mathematical Analysis and Related Topics,", Stanford University Press, (1962).

[17]

B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations,, J. Math. Anal. Appl., 195 (1995), 527. doi: 10.1006/jmaa.1995.1372.

[18]

J. P. Pinasco, Lower bounds for eigenvalues of the one-dimensional p-Laplacian,, Abstr. Appl. Anal., 2004 (2004), 147. doi: 10.1155/S108533750431002X.

[19]

T. W. Reid, A matrix equation related to a non-oscillation criterion and Lyapunov stability,, Quart. Appl. Math. Soc., 23 (1965), 83.

[20]

T. W. Reid, A matrix Lyapunov inequality,, J. Math. Anal. Appl., 32 (1970), 424. doi: 10.1016/0022-247X(70)90308-2.

[21]

B. Singh, Forced oscillations in general ordinary differential equations,, Tamkang Math. J., 6 (1976), 7. doi: euclid.hmj/1206135207.

[22]

X. H. Tang and M. Zhang, Lyapunov inequalities and stability for linear Hamiltonian systems,, J. Differential Equations, In press (). doi: 10.1016/j.jde.2011.08.002.

[23]

A. Tiryaki, M. Ünal and D. Cakmak, Lyapunov-type inequalities for nonlinear systems,, J. Math. Anal. Appl., 332 (2007), 497. doi: 10.1016/j.jmaa.2006.10.010.

[24]

X. Wang, Stability criteria for linear periodic Hamiltonian systems,, J. Math. Anal. Appl., 367 (2010), 329. doi: 10.1016/j.jmaa.2010.01.027.

[25]

X. Yang, On inequalities of Lyapunov type,, Appl. Math. Comput., 134 (2003), 293. doi: 10.1016/S0096-3003(01)00283-1.

[26]

X. Yang, On Liapunov-type inequality for certain higher-order differential equations,, Appl. Math. Comput., 134 (2003), 307. doi: 10.1016/S0096-3003(01)00285-5.

show all references

References:
[1]

S. S. Cheng, A discrete analogue of the inequality of Lyapunov,, Hokkaido Math. J., 12 (1983), 105. doi: /327/1/HMJ12-105.

[2]

S. S. Cheng, Lyapunov inequalities for differential and difference equations,, Hokkaido Math. Fasc. Math., 23 (1991), 25.

[3]

D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations,, Appl. Math. Comput., 216 (2010), 368. doi: 10.1016/j.amc.2010.01.010.

[4]

K. M. Das and A. S. Vatsala, Green's function for n-n boundary value problemand an analogue of Hartman's result,, J. Math. Anal. Appl., 51 (1975), 670. doi: 10.1016/0022-247X(75)90117-1.

[5]

S. B. Eliason, A Lyapunov inequality for a certain second order nonlinear differential equation,, J. London Math. Soc., 2 (1970), 461.

[6]

S. B. Eliason, Lyapunov type inequalities for certain second order functional differential equations,, SIAM J. Appl. Math., 27 (1974), 180. doi: 10.1137/0127015.

[7]

G. Sh. Guseinov and B. Kaymakcalan, Lyapunov inequalities for discrete linear Hamiltonian systems,, Comput. Math. Appl., 45 (2003), 1399. doi: 10.1016/S0898-1221(03)00095-6.

[8]

G. Sh. Guseinov and A. Zafer, Stability criteria for linear periodic impulsive Hamiltonian systems,, J. Math. Anal. Appl., 335 (2007), 1195. doi: 10.1016/j.jmaa.2007.01.095.

[9]

P. Hartman and A. Wintner, On an oscillation criterion of Lyapunov,, Amer. J. Math., 73 (1951), 885. doi: jstor.org/stable/2372122.

[10]

H. Hochstadt, A new proof of a stability estimate of Lyapunov,, Proc. Amer. Math. Soc., 14 (1963), 525. doi: 10.1090/S0002-9939-1963-0149019-6.

[11]

L. Q. Jiang and Z. Zhou, Lyapunov inequality for linear Hamiltonian systems on time scales,, J. Math. Anal. Appl., 310 (2005), 579. doi: 10.1016/j.jmaa.2005.02.026.

[12]

M. K. Kwong, On Lyapunov's inequality for disfocality,, J. Math. Anal. Appl., 83 (1981), 486. doi: 10.1016/0022-247X(81)90137-2.

[13]

C. Lee, C. Yeh, C. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities,, Appl. Math. Lett., 17 (2004), 847. doi: 10.1016/j.aml.2004.06.016.

[14]

A. M. Liapunov, Problème général de la stabilité du mouvement,, Fac. Sci. Univ. Toulouse., 2 (1907), 203.

[15]

Z. Nehari, Some eigenvalue estimates,, J. D'analyse Math., 7 (1959), 79. doi: 10.1007/BF02787681.

[16]

Z. Nehari, "On an inequality of Lyapunov, Studies in Mathematical Analysis and Related Topics,", Stanford University Press, (1962).

[17]

B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations,, J. Math. Anal. Appl., 195 (1995), 527. doi: 10.1006/jmaa.1995.1372.

[18]

J. P. Pinasco, Lower bounds for eigenvalues of the one-dimensional p-Laplacian,, Abstr. Appl. Anal., 2004 (2004), 147. doi: 10.1155/S108533750431002X.

[19]

T. W. Reid, A matrix equation related to a non-oscillation criterion and Lyapunov stability,, Quart. Appl. Math. Soc., 23 (1965), 83.

[20]

T. W. Reid, A matrix Lyapunov inequality,, J. Math. Anal. Appl., 32 (1970), 424. doi: 10.1016/0022-247X(70)90308-2.

[21]

B. Singh, Forced oscillations in general ordinary differential equations,, Tamkang Math. J., 6 (1976), 7. doi: euclid.hmj/1206135207.

[22]

X. H. Tang and M. Zhang, Lyapunov inequalities and stability for linear Hamiltonian systems,, J. Differential Equations, In press (). doi: 10.1016/j.jde.2011.08.002.

[23]

A. Tiryaki, M. Ünal and D. Cakmak, Lyapunov-type inequalities for nonlinear systems,, J. Math. Anal. Appl., 332 (2007), 497. doi: 10.1016/j.jmaa.2006.10.010.

[24]

X. Wang, Stability criteria for linear periodic Hamiltonian systems,, J. Math. Anal. Appl., 367 (2010), 329. doi: 10.1016/j.jmaa.2010.01.027.

[25]

X. Yang, On inequalities of Lyapunov type,, Appl. Math. Comput., 134 (2003), 293. doi: 10.1016/S0096-3003(01)00283-1.

[26]

X. Yang, On Liapunov-type inequality for certain higher-order differential equations,, Appl. Math. Comput., 134 (2003), 307. doi: 10.1016/S0096-3003(01)00285-5.

[1]

He Zhang, Xue Yang, Yong Li. Lyapunov-type inequalities and solvability of second-order ODEs across multi-resonance. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1133-1148. doi: 10.3934/dcdss.2017061

[2]

Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037

[3]

Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114

[4]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[5]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[6]

Naoki Chigira, Nobuo Iiyori and Hiroyoshi Yamaki. Nonabelian Sylow subgroups of finite groups of even order. Electronic Research Announcements, 1998, 4: 88-90.

[7]

Naoki Fujino, Mitsuru Yamazaki. Burgers' type equation with vanishing higher order. Communications on Pure & Applied Analysis, 2007, 6 (2) : 505-520. doi: 10.3934/cpaa.2007.6.505

[8]

R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203

[9]

Haibin Chen, Liqun Qi. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1263-1274. doi: 10.3934/jimo.2015.11.1263

[10]

Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 583-599. doi: 10.3934/naco.2013.3.583

[11]

James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137

[12]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[13]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[14]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[15]

Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257

[16]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[17]

Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018145

[18]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[19]

Shu-Yu Hsu. Some results for the Perelman LYH-type inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3535-3554. doi: 10.3934/dcds.2014.34.3535

[20]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]