• Previous Article
    Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains
  • CPAA Home
  • This Issue
  • Next Article
    Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows
March  2012, 11(2): 443-451. doi: 10.3934/cpaa.2012.11.443

Regularity criterion of the Newton-Boussinesq equations in $R^3$

1. 

College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, Zhejiang, China

2. 

Department of Mathematics, College of Science, Jazan University, Jazan, Kazakhstan

Received  January 2010 Revised  March 2011 Published  October 2011

In this paper, we consider the regularity problem under the critical condition to the Newton-Boussinesq equations. The Serrin type regularity criteria are established in terms of the critical Morrey-Campanato spaces and Besov spaces.
Citation: Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443
References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer-Verlag, (1976). Google Scholar

[2]

S. Chen, Symmetry analysis of convection patterns,, Commun. Theor. Phys., 1 (1982), 413. Google Scholar

[3]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001. Google Scholar

[4]

J. R. Cannon and E. Dibenedetto, The initial problem for the Boussinesq equation with data in $L^p$,, in, 771 (1980), 129. Google Scholar

[5]

X. Chen, S. Gala and Z. Guo, A new regularity criterion in terms of the direction of the velocity for the MHD equations,, Acta Appl. Math., 113 (2011), 207. doi: 10.1007/s10440-010-9594-2. Google Scholar

[6]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity,, Appl. Math. Lett., 22 (2009), 802. doi: 10.1016/j.aml.2008.06.041. Google Scholar

[7]

G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equations in a two-dimensional channel,, Nonlinear Anal., 70 (2009), 2000. doi: 10.1016/j.na.2008.02.098. Google Scholar

[8]

J. Geng, X. Chen and S. Gala, On regularity criteria for the 3D micropolar fluid equations in the critical Morrey-Campanato space,, Comm. Pure Appl. Anal., 10 (2011), 583. doi: 10.3934/cpaa.2011.10.583. Google Scholar

[9]

B. Guo, Spectral method for solving two-dimensional Newton-Boussinesq equation,, Acta. Math. Appl. Sin., 5 (1989), 201. Google Scholar

[10]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations,, Chin. Ann. Math., 16 (1995), 379. Google Scholar

[11]

Z. Guo and S. Gala, Remarks on logarithmical regularity criteria for the Navier-Stokes equations,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3569967. Google Scholar

[12]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations,, Math. Models Methods Appl. Sci., 9 (1999), 1323. Google Scholar

[13]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in Morrey spaces,, Bol. Soc. Bras. Mat., 22 (1992), 127. Google Scholar

[14]

P. G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space,, Rev. Mat. Iberoam., 23 (2007), 897. Google Scholar

[15]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes equations and other evolutions equations,, Comm. Partial Differential Equations, 17 (1992), 1407. doi: 10.1080/03605309208820892. Google Scholar

[16]

H. Triebel, "Theory of Function Spaces II,", Birkh\, (1992). Google Scholar

[17]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193. Google Scholar

[18]

Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces,, J. Math. Anal. Appl., 356 (2009), 498. Google Scholar

[19]

Y. Zhou and J. Fan, On the Cauchy problems for certain Boussinesq-$\alpha $ equations,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 319. doi: 10.1017/S0308210509000122. Google Scholar

[20]

Y. Zhou and S. Gala, Regularity criteria in terms of the pressure for the Navier-Stokes equations in the critical Morrey-Campanato space,, Z. Anal. Anwendungen, 30 (2011), 83. Google Scholar

[21]

Y. Zhou and S. Gala, On the existence of global solutions for the magneto-hydrodynamic equations,, Preprint (2010)., (2010). Google Scholar

show all references

References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer-Verlag, (1976). Google Scholar

[2]

S. Chen, Symmetry analysis of convection patterns,, Commun. Theor. Phys., 1 (1982), 413. Google Scholar

[3]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001. Google Scholar

[4]

J. R. Cannon and E. Dibenedetto, The initial problem for the Boussinesq equation with data in $L^p$,, in, 771 (1980), 129. Google Scholar

[5]

X. Chen, S. Gala and Z. Guo, A new regularity criterion in terms of the direction of the velocity for the MHD equations,, Acta Appl. Math., 113 (2011), 207. doi: 10.1007/s10440-010-9594-2. Google Scholar

[6]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity,, Appl. Math. Lett., 22 (2009), 802. doi: 10.1016/j.aml.2008.06.041. Google Scholar

[7]

G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equations in a two-dimensional channel,, Nonlinear Anal., 70 (2009), 2000. doi: 10.1016/j.na.2008.02.098. Google Scholar

[8]

J. Geng, X. Chen and S. Gala, On regularity criteria for the 3D micropolar fluid equations in the critical Morrey-Campanato space,, Comm. Pure Appl. Anal., 10 (2011), 583. doi: 10.3934/cpaa.2011.10.583. Google Scholar

[9]

B. Guo, Spectral method for solving two-dimensional Newton-Boussinesq equation,, Acta. Math. Appl. Sin., 5 (1989), 201. Google Scholar

[10]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations,, Chin. Ann. Math., 16 (1995), 379. Google Scholar

[11]

Z. Guo and S. Gala, Remarks on logarithmical regularity criteria for the Navier-Stokes equations,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3569967. Google Scholar

[12]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations,, Math. Models Methods Appl. Sci., 9 (1999), 1323. Google Scholar

[13]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in Morrey spaces,, Bol. Soc. Bras. Mat., 22 (1992), 127. Google Scholar

[14]

P. G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space,, Rev. Mat. Iberoam., 23 (2007), 897. Google Scholar

[15]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes equations and other evolutions equations,, Comm. Partial Differential Equations, 17 (1992), 1407. doi: 10.1080/03605309208820892. Google Scholar

[16]

H. Triebel, "Theory of Function Spaces II,", Birkh\, (1992). Google Scholar

[17]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, Z. Angew. Math. Phys., 61 (2010), 193. Google Scholar

[18]

Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces,, J. Math. Anal. Appl., 356 (2009), 498. Google Scholar

[19]

Y. Zhou and J. Fan, On the Cauchy problems for certain Boussinesq-$\alpha $ equations,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 319. doi: 10.1017/S0308210509000122. Google Scholar

[20]

Y. Zhou and S. Gala, Regularity criteria in terms of the pressure for the Navier-Stokes equations in the critical Morrey-Campanato space,, Z. Anal. Anwendungen, 30 (2011), 83. Google Scholar

[21]

Y. Zhou and S. Gala, On the existence of global solutions for the magneto-hydrodynamic equations,, Preprint (2010)., (2010). Google Scholar

[1]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[2]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[3]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[4]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[5]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[6]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[7]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[8]

Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure & Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117

[9]

Jishan Fan, Fucai Li, Gen Nakamura. A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1757-1766. doi: 10.3934/dcdsb.2018079

[10]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[11]

B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463

[12]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

[13]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[14]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[15]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[16]

Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani. On the global regularity of axisymmetric Navier-Stokes-Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 737-756. doi: 10.3934/dcds.2011.29.737

[17]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[18]

Chun-Hsiung Hsia, Tian Ma, Shouhong Wang. Rotating Boussinesq equations: Dynamic stability and transitions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 99-130. doi: 10.3934/dcds.2010.28.99

[19]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[20]

Yonggeun Cho, Tohru Ozawa. On small amplitude solutions to the generalized Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 691-711. doi: 10.3934/dcds.2007.17.691

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]