November  2012, 11(6): 2445-2472. doi: 10.3934/cpaa.2012.11.2445

The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow

1. 

Institut de Mathématiques (UMR CNRS 5219), Université Paul Sabatier, 31062 Toulouse Cedex 4, France

2. 

Laboratoire MIP, Université Paul Sabatier, 31062 Toulouse Cedex 9

Received  October 2010 Revised  June 2011 Published  April 2012

We consider in this paper the thermo-diffusive model for flame propagation, which is a reaction-diffusion equation of the KPP (Kolmogorov, Petrovskii, Piskunov) type, posed on an infinite cylinder. Such a model has a family of travelling waves of constant speed, larger than a critical speed $c_*$. The family of all supercritical waves attract a large class of initial data, and we try to understand how. We describe in this paper the fate of an initial datum trapped between two supercritical waves of the same velocity: the solution will converge to a whole set of translates of the same wave, and we identify the convergence dynamics as that of an effective drift, around which an effective diffusion process occurs.
Citation: Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445
References:
[1]

B. Audoly, H. Berestycki and Y. Pomeau, Réaction-diffusion en écoulement rapide,, C. R. Acad. Sci.Paris, 328 (2000), 255. Google Scholar

[2]

M. Bages, "Équations de réaction-diffusion de type KPP: ondes pulsatoires, dynamique non triviale et applications,", Ph.D thesis, (2007). Google Scholar

[3]

M. Bages, P. Martinez and J.-M. Roquejoffre, Dynamique en grand temps pour une classe d'équations de type KPP en milieu périodique,, C.R. Acad. Sci. Paris, 346 (2008), 1051. Google Scholar

[4]

M. Bages, P. Martinez and J.-M. Roquejoffre, How travelling waves attract solutions of KPP-type equations,, Trans A.M.S., (). Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In, 446 (): 101. Google Scholar

[6]

F. Benkhaldoun and B. Larrouturou, Numerical analysis of the two-dimensional thermodiffusive model for flame propagation,, RAIRO Mod\`el. Math. Anal. Num\'er., 22 (1988), 535. Google Scholar

[7]

H. Berestycki and B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées,, Nonlinear Partial Differential Equations and their Applications, (1991), 65. Google Scholar

[8]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincar\'e, 9 (1992), 497. Google Scholar

[9]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Memoirs of the AMS, 44 (1983). Google Scholar

[10]

P. Collet and J. P. Eckmann, Space-time behaviour in problems of hydrodynamic type: a case study,, Nonlinearity, 5 (1992), 1265. doi: 10.1088/0951-7715/5/6/004. Google Scholar

[11]

U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts,, Physica D, 146 (2000), 1. doi: 10.1016/S0167-2789(00)00068-3. Google Scholar

[12]

A. Fannjiang and G. Papanicolaou, Convection Enhanced Diffusion for Periodic Flows,, SIAM J. Appl. Math., 54 (1994), 333. doi: 10.1137/S0036139992236785. Google Scholar

[13]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\RR^N$,, Arch. Ration. Mech. Anal., 157 (2001), 91. doi: 10.1007/PL00004238. Google Scholar

[14]

F. Hamel and L. Roques, Uniqueness and stability of monostable pulsating travelling fronts,, J. European Math. Soc, (). Google Scholar

[15]

F. Hamel and L. Ryzhik, Non-adiabatic KPP fronts with an arbitrary Lewis number,, Nonlinearity, 18 (2005), 2881. doi: 10.1088/0951-7715/18/6/024. Google Scholar

[16]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (). Google Scholar

[17]

A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection,, Ann. de l'Inst. Henri Poincar\'e, 18 (2001), 309. Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1. Google Scholar

[19]

N. Maman and B. Larrouturou, Dynamical mesh adaption for two-dimensional reactive flow simulations,, in, (1991), 13. Google Scholar

[20]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP equations,, in preparation., (). Google Scholar

[21]

J.-F. Mallordy and J.-M. Roquejoffre, A parabolic equation of the KPP type in higher dimensions,, SIAM J. Math. Anal., 26 (1995), 1. doi: 10.1137/S0036141093246105. Google Scholar

[22]

J. R. Norris, Long-time behaviour of heat flow : global estimates and exact asymptotics,, Arch. Rational Mech. Anal., 140 (1997), 161. doi: 10.1007/s002050050063. Google Scholar

[23]

J. Ortega and E. Zuazua, Large time behaviour in RN for linear parabolic equations with periodic coefficients,, Asymptotic Analysis, 22 (2000), 51. Google Scholar

[24]

J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling waves for semi-linear parabolic equations in cylinders,, Ann. IHP, 14 (1997), 499. Google Scholar

[25]

K. Uchiyama, The behaviour of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453. Google Scholar

[26]

J.-L. Vazqueza and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chinese Annals of Mathematics, 23 (2002), 293. Google Scholar

show all references

References:
[1]

B. Audoly, H. Berestycki and Y. Pomeau, Réaction-diffusion en écoulement rapide,, C. R. Acad. Sci.Paris, 328 (2000), 255. Google Scholar

[2]

M. Bages, "Équations de réaction-diffusion de type KPP: ondes pulsatoires, dynamique non triviale et applications,", Ph.D thesis, (2007). Google Scholar

[3]

M. Bages, P. Martinez and J.-M. Roquejoffre, Dynamique en grand temps pour une classe d'équations de type KPP en milieu périodique,, C.R. Acad. Sci. Paris, 346 (2008), 1051. Google Scholar

[4]

M. Bages, P. Martinez and J.-M. Roquejoffre, How travelling waves attract solutions of KPP-type equations,, Trans A.M.S., (). Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In, 446 (): 101. Google Scholar

[6]

F. Benkhaldoun and B. Larrouturou, Numerical analysis of the two-dimensional thermodiffusive model for flame propagation,, RAIRO Mod\`el. Math. Anal. Num\'er., 22 (1988), 535. Google Scholar

[7]

H. Berestycki and B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées,, Nonlinear Partial Differential Equations and their Applications, (1991), 65. Google Scholar

[8]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincar\'e, 9 (1992), 497. Google Scholar

[9]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Memoirs of the AMS, 44 (1983). Google Scholar

[10]

P. Collet and J. P. Eckmann, Space-time behaviour in problems of hydrodynamic type: a case study,, Nonlinearity, 5 (1992), 1265. doi: 10.1088/0951-7715/5/6/004. Google Scholar

[11]

U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts,, Physica D, 146 (2000), 1. doi: 10.1016/S0167-2789(00)00068-3. Google Scholar

[12]

A. Fannjiang and G. Papanicolaou, Convection Enhanced Diffusion for Periodic Flows,, SIAM J. Appl. Math., 54 (1994), 333. doi: 10.1137/S0036139992236785. Google Scholar

[13]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\RR^N$,, Arch. Ration. Mech. Anal., 157 (2001), 91. doi: 10.1007/PL00004238. Google Scholar

[14]

F. Hamel and L. Roques, Uniqueness and stability of monostable pulsating travelling fronts,, J. European Math. Soc, (). Google Scholar

[15]

F. Hamel and L. Ryzhik, Non-adiabatic KPP fronts with an arbitrary Lewis number,, Nonlinearity, 18 (2005), 2881. doi: 10.1088/0951-7715/18/6/024. Google Scholar

[16]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (). Google Scholar

[17]

A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection,, Ann. de l'Inst. Henri Poincar\'e, 18 (2001), 309. Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1. Google Scholar

[19]

N. Maman and B. Larrouturou, Dynamical mesh adaption for two-dimensional reactive flow simulations,, in, (1991), 13. Google Scholar

[20]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP equations,, in preparation., (). Google Scholar

[21]

J.-F. Mallordy and J.-M. Roquejoffre, A parabolic equation of the KPP type in higher dimensions,, SIAM J. Math. Anal., 26 (1995), 1. doi: 10.1137/S0036141093246105. Google Scholar

[22]

J. R. Norris, Long-time behaviour of heat flow : global estimates and exact asymptotics,, Arch. Rational Mech. Anal., 140 (1997), 161. doi: 10.1007/s002050050063. Google Scholar

[23]

J. Ortega and E. Zuazua, Large time behaviour in RN for linear parabolic equations with periodic coefficients,, Asymptotic Analysis, 22 (2000), 51. Google Scholar

[24]

J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling waves for semi-linear parabolic equations in cylinders,, Ann. IHP, 14 (1997), 499. Google Scholar

[25]

K. Uchiyama, The behaviour of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453. Google Scholar

[26]

J.-L. Vazqueza and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chinese Annals of Mathematics, 23 (2002), 293. Google Scholar

[1]

Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801

[2]

Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks & Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006

[3]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[4]

François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks & Heterogeneous Media, 2013, 8 (1) : 275-289. doi: 10.3934/nhm.2013.8.275

[5]

Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1193-1213. doi: 10.3934/cpaa.2016.15.1193

[6]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[7]

Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069

[8]

Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11

[9]

Christian Kuehn, Pasha Tkachov. Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2077-2100. doi: 10.3934/dcds.2019087

[10]

Xiao-Qiang Zhao, Wendi Wang. Fisher waves in an epidemic model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1117-1128. doi: 10.3934/dcdsb.2004.4.1117

[11]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[12]

Aijun Zhang. Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations. Conference Publications, 2013, 2013 (special) : 815-824. doi: 10.3934/proc.2013.2013.815

[13]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 15-29. doi: 10.3934/dcdsb.2011.16.15

[14]

Aaron Hoffman, Matt Holzer. Invasion fronts on graphs: The Fisher-KPP equation on homogeneous trees and Erdős-Réyni graphs. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 671-694. doi: 10.3934/dcdsb.2018202

[15]

Yaping Wu, Xiuxia Xing. Stability of traveling waves with critical speeds for $P$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1123-1139. doi: 10.3934/dcds.2008.20.1123

[16]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[17]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[18]

Praveen Kumar Gupta, Ajoy Dutta. Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019038

[19]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[20]

Yanni Zeng, Kun Zhao. On the logarithmic Keller-Segel-Fisher/KPP system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5365-5402. doi: 10.3934/dcds.2019220

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]