November  2012, 11(6): 2201-2212. doi: 10.3934/cpaa.2012.11.2201

Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup

1. 

Abteilung Angewante Analysis, Universität Ulm, 89069 Ulm

2. 

Department of Mathematics, Stanford University, Stanford, CA 94305, United States

Received  February 2011 Revised  February 2011 Published  April 2012

If $\Omega$ is any compact Lipschitz domain, possibly in a Riemannian manifold, with boundary $\Gamma = \partial \Omega$, the Dirichlet-to-Neumann operator $\mathcal{D}_\lambda$ is defined on $L^2(\Gamma)$ for any real $\lambda$. We prove a close relationship between the eigenvalues of $\mathcal{D}_\lambda$ and those of the Robin Laplacian $\Delta_\mu$, i.e. the Laplacian with Robin boundary conditions $\partial_\nu u =\mu u$. This is used to give another proof of the Friedlander inequalities between Neumann and Dirichlet eigenvalues, $\lambda^N_{k+1} \leq \lambda^D_k$, $k \in N$, and to sharpen the inequality to be strict, whenever $\Omega$ is a Lipschitz domain in $R^d$. We give new counterexamples to these inequalities in the general Riemannian setting. Finally, we prove that the semigroup generated by $-\mathcal{D}_\lambda$, for $\lambda$ sufficiently small or negative, is irreducible.
Citation: Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201
References:
[1]

W. Arendt and C. Batty, Domination and ergodicity for positive semigroups,, Proc. Amer. Math. Soc., 114 (1992), 743. doi: 10.1090/S0002-9939-1992-1072082-3. Google Scholar

[2]

W. Arendt and C. Batty, Exponential stability of diffusion equations with absorption,, Diff. Int. Equ., 6 (1993), 1009. Google Scholar

[3]

W. Arendt and R. Mazzeo, Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains,, Ulmer Seminare, Heft 12 (2007), 28. Google Scholar

[4]

W. Arendt and T. ter Elst, The Dirichlet to Neumann operator on rough domains,, J. Differential Equations, 251 (2011), 2100. Google Scholar

[5]

W. Arendt and M. Warma, Dirichlet and Neumann boundary conditions: What is between?, J. Evolution Equ., 3 (2003), 119. doi: 10.1007/s000280300005. Google Scholar

[6]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge University Press 1990., (1990). Google Scholar

[7]

H. Emamirad and I. Laadnani, An approximating family for the Dirichlet-to-Neumann semigroup,, Adv. Diff. Equ., 11 (2006), 241. Google Scholar

[8]

N. Filinov, On an inequality between Dirichlet and Neumann eigenvalues for the Laplace operator,, St. Petersburg Math. J., 16 (2005), 413. doi: 10.1090/S1061-0022-05-00857-5. Google Scholar

[9]

L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues,, Arch. Rational Mech. Anal., 116 (1991), 153. doi: 10.1007/BF00375590. Google Scholar

[10]

F. Gesztesy and M. Mitrea, Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities,, J. Diff. Eq., 247 (2009), 2871. doi: 10.1016/j.jde.2009.07.007. Google Scholar

[11]

J. P. Grégoire, J. C. Nédélec and J. Planchard, A method of finding the eigenvalues and eigenfunctions of self-adjoint elliptic operators,, Comp. Methods in Appl. Mech. and Eng., 8 (1976), 201. Google Scholar

[12]

E. Hebey, "Sobolev Spaces on Riemannian Manifolds,", Springer, LN 1635 (1993). Google Scholar

[13]

E. Hebey, "Nonlinear Analysis on Manifolds Sobolev Spaces and Inequalities,", Courant Lecture Notes in Mathematics 5, (1999). Google Scholar

[14]

A. Henrot, "Extremum Problems for Eigenvalues of Elliptic Operators,", Birkh\, (2006). Google Scholar

[15]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes,", Springer, (2005). Google Scholar

[16]

T. Kato, "Perturbation Theory,", Springer, (1966). Google Scholar

[17]

D. Mitrea, M. Mitrea and M. Taylor, "Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds,", Memoires of Amer. Math. Soc., 150 (2001). Google Scholar

[18]

M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds,, Journal of Functional Anal., 163 (1999), 181. doi: 10.1006/jfan.1998.3383. Google Scholar

[19]

R. Mazzeo, Remarks on a paper of L. Friedlander concerning inequalities between Neumann and Dirichlet eigenvalues,, Internat. Math. Res. Notices, 4 (1991), 41. doi: 10.1155/S1073792891000065. Google Scholar

[20]

R. Nagel ed., "One-parameter Semigroups of Positive Operators,", Springer LN, 1184 (1986). Google Scholar

[21]

J. Necaš, "Les Méthodes Directes en Théorie des Equations Elliptiques,", Masson, (1967). Google Scholar

[22]

E. M. Ouhabaz, "Analysis of the Heat Equation on Domains,", London Mathematical Society Monographs {\bf 31}, 31 (2005). Google Scholar

[23]

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains,, J. Funct. Anal., 18 (1975), 27. Google Scholar

[24]

Y. Safarov, On the comparison of the Dirichlet and Neumann counting functions,, In, (2008), 191. Google Scholar

show all references

References:
[1]

W. Arendt and C. Batty, Domination and ergodicity for positive semigroups,, Proc. Amer. Math. Soc., 114 (1992), 743. doi: 10.1090/S0002-9939-1992-1072082-3. Google Scholar

[2]

W. Arendt and C. Batty, Exponential stability of diffusion equations with absorption,, Diff. Int. Equ., 6 (1993), 1009. Google Scholar

[3]

W. Arendt and R. Mazzeo, Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains,, Ulmer Seminare, Heft 12 (2007), 28. Google Scholar

[4]

W. Arendt and T. ter Elst, The Dirichlet to Neumann operator on rough domains,, J. Differential Equations, 251 (2011), 2100. Google Scholar

[5]

W. Arendt and M. Warma, Dirichlet and Neumann boundary conditions: What is between?, J. Evolution Equ., 3 (2003), 119. doi: 10.1007/s000280300005. Google Scholar

[6]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge University Press 1990., (1990). Google Scholar

[7]

H. Emamirad and I. Laadnani, An approximating family for the Dirichlet-to-Neumann semigroup,, Adv. Diff. Equ., 11 (2006), 241. Google Scholar

[8]

N. Filinov, On an inequality between Dirichlet and Neumann eigenvalues for the Laplace operator,, St. Petersburg Math. J., 16 (2005), 413. doi: 10.1090/S1061-0022-05-00857-5. Google Scholar

[9]

L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues,, Arch. Rational Mech. Anal., 116 (1991), 153. doi: 10.1007/BF00375590. Google Scholar

[10]

F. Gesztesy and M. Mitrea, Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities,, J. Diff. Eq., 247 (2009), 2871. doi: 10.1016/j.jde.2009.07.007. Google Scholar

[11]

J. P. Grégoire, J. C. Nédélec and J. Planchard, A method of finding the eigenvalues and eigenfunctions of self-adjoint elliptic operators,, Comp. Methods in Appl. Mech. and Eng., 8 (1976), 201. Google Scholar

[12]

E. Hebey, "Sobolev Spaces on Riemannian Manifolds,", Springer, LN 1635 (1993). Google Scholar

[13]

E. Hebey, "Nonlinear Analysis on Manifolds Sobolev Spaces and Inequalities,", Courant Lecture Notes in Mathematics 5, (1999). Google Scholar

[14]

A. Henrot, "Extremum Problems for Eigenvalues of Elliptic Operators,", Birkh\, (2006). Google Scholar

[15]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes,", Springer, (2005). Google Scholar

[16]

T. Kato, "Perturbation Theory,", Springer, (1966). Google Scholar

[17]

D. Mitrea, M. Mitrea and M. Taylor, "Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds,", Memoires of Amer. Math. Soc., 150 (2001). Google Scholar

[18]

M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds,, Journal of Functional Anal., 163 (1999), 181. doi: 10.1006/jfan.1998.3383. Google Scholar

[19]

R. Mazzeo, Remarks on a paper of L. Friedlander concerning inequalities between Neumann and Dirichlet eigenvalues,, Internat. Math. Res. Notices, 4 (1991), 41. doi: 10.1155/S1073792891000065. Google Scholar

[20]

R. Nagel ed., "One-parameter Semigroups of Positive Operators,", Springer LN, 1184 (1986). Google Scholar

[21]

J. Necaš, "Les Méthodes Directes en Théorie des Equations Elliptiques,", Masson, (1967). Google Scholar

[22]

E. M. Ouhabaz, "Analysis of the Heat Equation on Domains,", London Mathematical Society Monographs {\bf 31}, 31 (2005). Google Scholar

[23]

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains,, J. Funct. Anal., 18 (1975), 27. Google Scholar

[24]

Y. Safarov, On the comparison of the Dirichlet and Neumann counting functions,, In, (2008), 191. Google Scholar

[1]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[2]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[3]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[4]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[5]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[6]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[7]

Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1

[8]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiple solutions for a class of nonlinear Neumann eigenvalue problems. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1491-1512. doi: 10.3934/cpaa.2014.13.1491

[9]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[10]

Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks & Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483

[11]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

[12]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[13]

Rola Kiwan, Ahmad El Soufi. Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1193-1201. doi: 10.3934/cpaa.2008.7.1193

[14]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[15]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[16]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[17]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[18]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[19]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[20]

Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019092

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]