May  2012, 11(3): 1003-1011. doi: 10.3934/cpaa.2012.11.1003

Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations

1. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

2. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong

Received  October 2010 Revised  April 2011 Published  December 2011

We study the uniqueness of positive solutions of the following coupled nonlinear Schrödinger equations: \begin{eqnarray*} \Delta u_1-\lambda_1 u_1+\mu_1u_1^3+\beta u_1u_2^2=0\quad in\quad R^N,\\ \Delta u_2-\lambda_2u_2+\mu_2u_2^3+\beta u_1^2u_2=0\quad in\quad R^N, \\ u_1>0, u_2>0, u_1, u_2 \in H^1 (R^N), \end{eqnarray*} where $N\leq3$, $\lambda_1,\lambda_2,\mu_1,\mu_2$ are positive constants and $\beta\geq 0$ is a coupling constant. We prove first the uniqueness of positive solution for sufficiently small $\beta > 0$. Secondly, assuming that $\lambda_1=\lambda_2$, we show that $u_1=u_2\sqrt{\beta-\mu_1}/\sqrt{\beta-\mu_2}$ when $\beta > \max\{\mu_1,\mu_2\}$ and thus obtain the uniqueness of positive solution using the corresponding result of scalar equation. Finally, for $N=1$ and $\lambda_1=\lambda_2$, we prove the uniqueness of positive solution when $0\leq \beta\notin [\min\{\mu_1,\mu_2\},\max\{\mu_1,\mu_2\}]$ and thus give a complete classification of positive solutions.
Citation: Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003
References:
[1]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024.

[2]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space,, J. Differential Equations, 163 (2000), 41. doi: 10.1006/jdeq.1999.3701.

[3]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Eqns., 19 (2006), 200.

[4]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6.

[5]

E. N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189. doi: 10.1090/S0002-9947-08-04735-1.

[6]

N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system,, NoDEA, 16 (2009), 555. doi: 10.1007/s00030-009-0017-x.

[7]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations,, Adv. Diff. Eqns., 5 (2000), 899.

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243. doi: 10.1007/BF00251502.

[9]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Communications in Mathematical Physics, 255 (2005), 629. doi: 10.1007/s00220-005-1313-x.

[10]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Diff. Eqns., 229 (2006), 538. doi: 10.1016/j.jde.2005.12.011.

[11]

O. Lopes, Uniqueness of a symmetric positive solutions to an ODE system,, Elect. J. Diff. Eqns., 162 (2009), 1.

[12]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations,, Comm. Math. Physics, 271 (2007), 199. doi: 10.1007/s00220-006-0179-x.

show all references

References:
[1]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024.

[2]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space,, J. Differential Equations, 163 (2000), 41. doi: 10.1006/jdeq.1999.3701.

[3]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Eqns., 19 (2006), 200.

[4]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6.

[5]

E. N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189. doi: 10.1090/S0002-9947-08-04735-1.

[6]

N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system,, NoDEA, 16 (2009), 555. doi: 10.1007/s00030-009-0017-x.

[7]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations,, Adv. Diff. Eqns., 5 (2000), 899.

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243. doi: 10.1007/BF00251502.

[9]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Communications in Mathematical Physics, 255 (2005), 629. doi: 10.1007/s00220-005-1313-x.

[10]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Diff. Eqns., 229 (2006), 538. doi: 10.1016/j.jde.2005.12.011.

[11]

O. Lopes, Uniqueness of a symmetric positive solutions to an ODE system,, Elect. J. Diff. Eqns., 162 (2009), 1.

[12]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations,, Comm. Math. Physics, 271 (2007), 199. doi: 10.1007/s00220-006-0179-x.

[1]

Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205

[2]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[3]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[4]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[5]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[6]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

[7]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[8]

Alessio Pomponio, Simone Secchi. A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities. Communications on Pure & Applied Analysis, 2010, 9 (3) : 741-750. doi: 10.3934/cpaa.2010.9.741

[9]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[10]

Jiabao Su, Rushun Tian, Zhi-Qiang Wang. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2143-2161. doi: 10.3934/dcdss.2019138

[11]

W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708

[12]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[13]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[14]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[15]

Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565

[16]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[17]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[18]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[19]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

[20]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]