January  2012, 11(1): 1-18. doi: 10.3934/cpaa.2012.11.1

Sharp interface limit of the Fisher-KPP equation

1. 

I3M, Université de Montpellier 2, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 5

2. 

UMR CNRS 5251, I.M.B. and INRIA Bordeaux Sud-ouest Anubis, case 36, UFR Sciences et Modélisation, Université Victor Segalen Bordeaux 2, 3 ter, place de la Victoire - 33076 Bordeaux cedex

Received  January 2010 Revised  July 2010 Published  September 2011

We investigate the singular limit, as $\varepsilon\to 0$, of the Fisher equation $\partial_t u=\varepsilon\Delta u + \varepsilon^{-1}u(1-u)$ in the whole space. We consider initial data with compact support plus, possibly, perturbations very small as $||x|| \to \infty$. By proving both generation and motion of interface properties, we show that the sharp interface limit moves by a constant speed, which is the minimal speed of some related one-dimensional travelling waves. Moreover, we obtain a new estimate of the thickness of the transition layers. We also exhibit initial data "not so small" at infinity which do not allow the interface phenomena.
Citation: Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1
References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, (1974), 5. Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. Google Scholar

[4]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Math. J., 61 (1990), 835. Google Scholar

[5]

G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation,, C. R. Acad. Sci. Paris S\'er. I Math., 319 (1994), 679. Google Scholar

[6]

H. Berestycki and F. Hamel, On the general definition of transition waves and their properties,, preprint., (). Google Scholar

[7]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. II. General domains,, J. Amer. Math. Soc., 23 (2010), 1. Google Scholar

[8]

H. Berestycki, F. Hamel and L. Roques, Équations de réaction-diffusion et modèles d'invasions biologiques dans les milieux périodiques,, C. R. Math. Acad. Sci. Paris, 339 (2004), 549. Google Scholar

[9]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. Google Scholar

[10]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Univ. Math. J., 38 (1989), 141. Google Scholar

[11]

E. Feireisl, Front propagation for degenerate parabolic equations,, Nonlinear Anal., 35 (1999), 735. Google Scholar

[12]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355. Google Scholar

[13]

M. I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, Ann. Probab., 13 (1985), 639. Google Scholar

[14]

D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2872. Google Scholar

[15]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Universit\'e d'Etat Moscou, (1937), 1. Google Scholar

[16]

H. Malchow, S. V. Petrovskii and E. Venturino, "Spatiotemporal Patterns in Ecology and Epidemiology. Theory, Models, and Simulations,", Mathematical and Computational Biology Series, (2008). Google Scholar

[17]

S. V. Petrovskii and H. Malchow, eds. (2005), "Biological Invasions in a Mathematical Perspective,", (A special issue of Biological Invasions: Proceedings of Computational and Mathematical Population Dynamics, (2004), 21. Google Scholar

[18]

N. Shigesada and K. Kawasaki, "Biological Invasion: Theory and Practise,", Oxford University Press, (1997). Google Scholar

[19]

S. Vakulenko and V. Volpert, Generalized travelling waves for perturbed monotone reaction-diffusion systems,, Nonlinear Anal., 46 (2001), 757. Google Scholar

[20]

A. Volpert, V. Volpert, V. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, (1994). Google Scholar

show all references

References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, (1974), 5. Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. Google Scholar

[4]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Math. J., 61 (1990), 835. Google Scholar

[5]

G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation,, C. R. Acad. Sci. Paris S\'er. I Math., 319 (1994), 679. Google Scholar

[6]

H. Berestycki and F. Hamel, On the general definition of transition waves and their properties,, preprint., (). Google Scholar

[7]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. II. General domains,, J. Amer. Math. Soc., 23 (2010), 1. Google Scholar

[8]

H. Berestycki, F. Hamel and L. Roques, Équations de réaction-diffusion et modèles d'invasions biologiques dans les milieux périodiques,, C. R. Math. Acad. Sci. Paris, 339 (2004), 549. Google Scholar

[9]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. Google Scholar

[10]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Univ. Math. J., 38 (1989), 141. Google Scholar

[11]

E. Feireisl, Front propagation for degenerate parabolic equations,, Nonlinear Anal., 35 (1999), 735. Google Scholar

[12]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355. Google Scholar

[13]

M. I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, Ann. Probab., 13 (1985), 639. Google Scholar

[14]

D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2872. Google Scholar

[15]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Universit\'e d'Etat Moscou, (1937), 1. Google Scholar

[16]

H. Malchow, S. V. Petrovskii and E. Venturino, "Spatiotemporal Patterns in Ecology and Epidemiology. Theory, Models, and Simulations,", Mathematical and Computational Biology Series, (2008). Google Scholar

[17]

S. V. Petrovskii and H. Malchow, eds. (2005), "Biological Invasions in a Mathematical Perspective,", (A special issue of Biological Invasions: Proceedings of Computational and Mathematical Population Dynamics, (2004), 21. Google Scholar

[18]

N. Shigesada and K. Kawasaki, "Biological Invasion: Theory and Practise,", Oxford University Press, (1997). Google Scholar

[19]

S. Vakulenko and V. Volpert, Generalized travelling waves for perturbed monotone reaction-diffusion systems,, Nonlinear Anal., 46 (2001), 757. Google Scholar

[20]

A. Volpert, V. Volpert, V. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, (1994). Google Scholar

[1]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 15-29. doi: 10.3934/dcdsb.2011.16.15

[2]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[3]

Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801

[4]

Christian Kuehn, Pasha Tkachov. Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2077-2100. doi: 10.3934/dcds.2019087

[5]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[6]

Aaron Hoffman, Matt Holzer. Invasion fronts on graphs: The Fisher-KPP equation on homogeneous trees and Erdős-Réyni graphs. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 671-694. doi: 10.3934/dcdsb.2018202

[7]

Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks & Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006

[8]

François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks & Heterogeneous Media, 2013, 8 (1) : 275-289. doi: 10.3934/nhm.2013.8.275

[9]

Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1193-1213. doi: 10.3934/cpaa.2016.15.1193

[10]

Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069

[11]

Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11

[12]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[13]

Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445

[14]

Aijun Zhang. Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations. Conference Publications, 2013, 2013 (special) : 815-824. doi: 10.3934/proc.2013.2013.815

[15]

Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139

[16]

Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323

[17]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[18]

Karel Hasik, Sergei Trofimchuk. Slowly oscillating wavefronts of the KPP-Fisher delayed equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3511-3533. doi: 10.3934/dcds.2014.34.3511

[19]

Michael Stiassnie, Raphael Stuhlmeier. Progressive waves on a blunt interface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3171-3182. doi: 10.3934/dcds.2014.34.3171

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-26. doi: 10.3934/dcds.2019226

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]