May  2011, 10(3): 963-981. doi: 10.3934/cpaa.2011.10.963

On finite-time hyperbolicity

1. 

Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1

Received  March 2009 Revised  September 2009 Published  December 2010

A solution of a nonautonomous ordinary differential equation is finite-time hyperbolic, i.e. hyperbolic on a compact interval of time, if the linearisation along that solution exhibits a strong exponential dichotomy. As a finite-time variant and strengthening of classical asymptotic facts, it is shown that finite-time hyperbolicity guarantees the existence of stable and unstable manifolds of the appropriate dimensions. Eigenvalues and -vectors are often unsuitable for detecting hyperbolicity. A (dynamic) partition of the extended phase space is used to circumvent this difficulty. It is proved that any solution staying clear of the elliptic and degenerate parts of the partition is finite-time hyperbolic. This extends and unifies earlier partial results.
Citation: Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963
References:
[1]

A. Berger, T. S. Doan and S. Siegmund, Nonautonomous finite-time dynamics,, Discrete Continuous Dynam. Systems - B, 9 (2008), 463.

[2]

A. Berger, T. S. Doan and S. Siegmund, A remark on finite-time hyperbolicity,, PAMM Proc. Appl. Math. Mech., 8 (2008), 10917. doi: doi:10.1002/pamm.200810917.

[3]

A. Berger, T. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time,, J. Differential Equations, 246 (2009), 1098. doi: doi:10.1016/j.jde.2008.06.036.

[4]

M. Berger and B. Gostiaux, "Differential Geometry: Manifolds, Curves, and Surfaces,", Springer, (1988).

[5]

A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Mathematics \textbf{629}, 629 (1978).

[6]

L. H. Duc and S. Siegmund, Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 641. doi: doi:10.1142/S0218127408020562.

[7]

G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields,, Chaos, 10 (2000), 99. doi: doi:10.1063/1.166479.

[8]

G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248. doi: doi:10.1016/S0167-2789(00)00199-8.

[9]

G. Haller, Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence,, Physics of Fluids, 13 (2001), 3365. doi: doi:10.1063/1.1403336.

[10]

G. Haller, An objective definition of a vortex,, J. Fluid Mech., 525 (2005), 1. doi: doi:10.1017/S0022112004002526.

[11]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352. doi: doi:10.1016/S0167-2789(00)00142-1.

[12]

M. C. Irwin, "Smooth Dynamical Systems,", World Scientific, (2001). doi: doi:10.1142/9789812810120.

[13]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1980).

[14]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Cambridge University Press, (1995).

[15]

K. Palmer, "Shadowing in Dynamical Systems. Theory and Applications,", Kluwer, (2000).

[16]

R. M. Samelson and S. Wiggins, "Lagrangian Transport in Geophysical Jets and Waves. The Dynamical Systems Approach,'', Springer, (2006).

[17]

S. C. Shadden, F. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows,, Physica D, 212 (2005), 271. doi: doi:10.1016/j.physd.2005.10.007.

[18]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,", Springer, (1990).

show all references

References:
[1]

A. Berger, T. S. Doan and S. Siegmund, Nonautonomous finite-time dynamics,, Discrete Continuous Dynam. Systems - B, 9 (2008), 463.

[2]

A. Berger, T. S. Doan and S. Siegmund, A remark on finite-time hyperbolicity,, PAMM Proc. Appl. Math. Mech., 8 (2008), 10917. doi: doi:10.1002/pamm.200810917.

[3]

A. Berger, T. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time,, J. Differential Equations, 246 (2009), 1098. doi: doi:10.1016/j.jde.2008.06.036.

[4]

M. Berger and B. Gostiaux, "Differential Geometry: Manifolds, Curves, and Surfaces,", Springer, (1988).

[5]

A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Mathematics \textbf{629}, 629 (1978).

[6]

L. H. Duc and S. Siegmund, Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 641. doi: doi:10.1142/S0218127408020562.

[7]

G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields,, Chaos, 10 (2000), 99. doi: doi:10.1063/1.166479.

[8]

G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248. doi: doi:10.1016/S0167-2789(00)00199-8.

[9]

G. Haller, Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence,, Physics of Fluids, 13 (2001), 3365. doi: doi:10.1063/1.1403336.

[10]

G. Haller, An objective definition of a vortex,, J. Fluid Mech., 525 (2005), 1. doi: doi:10.1017/S0022112004002526.

[11]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352. doi: doi:10.1016/S0167-2789(00)00142-1.

[12]

M. C. Irwin, "Smooth Dynamical Systems,", World Scientific, (2001). doi: doi:10.1142/9789812810120.

[13]

T. Kato, "Perturbation Theory for Linear Operators,", Springer, (1980).

[14]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Cambridge University Press, (1995).

[15]

K. Palmer, "Shadowing in Dynamical Systems. Theory and Applications,", Kluwer, (2000).

[16]

R. M. Samelson and S. Wiggins, "Lagrangian Transport in Geophysical Jets and Waves. The Dynamical Systems Approach,'', Springer, (2006).

[17]

S. C. Shadden, F. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows,, Physica D, 212 (2005), 271. doi: doi:10.1016/j.physd.2005.10.007.

[18]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,", Springer, (1990).

[1]

Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463

[2]

Peter Giesl, James McMichen. Determination of the area of exponential attraction in one-dimensional finite-time systems using meshless collocation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1835-1850. doi: 10.3934/dcdsb.2018094

[3]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[4]

Éder Rítis Aragão Costa. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 845-868. doi: 10.3934/cpaa.2019041

[5]

Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469

[6]

Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

[7]

Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016

[8]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[9]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[10]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[11]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[12]

Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137

[13]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[14]

Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403

[15]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[16]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[17]

Juan Luis Vázquez. Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 1-35. doi: 10.3934/dcds.2007.19.1

[18]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[19]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[20]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]