May  2011, 10(3): 917-936. doi: 10.3934/cpaa.2011.10.917

Feedback control via inertial manifolds for nonautonomous evolution equations

1. 

Fachrichtung Mathematik, Technische Universitat Dresden, 01062 Dresden, Germany

2. 

Department of Mathematics, Dresden University of Technology, 01062 Dresden

Received  April 2009 Revised  September 2009 Published  December 2010

In this paper we extend a method to control the dynamics of evolution equations by finite dimensional controllers which was suggested by Brunovsky [3] to nonautonomous evolution equations using nonautonomous inertial manifold theory.
Citation: Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917
References:
[1]

L. Arnold and I. Chueshov, Order-preserving random dynamical systems: Equilibria, attractors, applications,, Dyn. Stab. Syst., 13 (1998), 265. Google Scholar

[2]

L. Boutet de Monvel, I. D. Chueshov and A. V. Rezounenko, Inertial manifolds for retarded semilinear parabolic equations,, Nonlinear Analysis, 34 (1998), 907. doi: doi:10.1016/S0362-546X(97)00569-5. Google Scholar

[3]

P. Brunovsky, Controlling the dynamics of scalar reaction diffusion equations by finite dimensional controllers,, Proc. IFIP-IIASA Conf., (1991), 22. Google Scholar

[4]

S. N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285. doi: doi:10.1016/0022-0396(88)90007-1. Google Scholar

[5]

I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dyn. Differ. Equations, 13 (2001), 355. doi: doi:10.1023/A:1016684108862. Google Scholar

[6]

C. M. Dafermos, An invariance principle for compact processes,, J. Differ. Equations, 9 (1971), 239. Google Scholar

[7]

C. M. Dafermos, Semiflows associated with compact and uniform processes,, Math. Systems Theory, 8 (1975), 142. doi: doi:10.1007/BF01762184. Google Scholar

[8]

D. Daners and P. Koch Medina, "Abstract Evolution Equations, Periodic Problems and Application,", Pitman Research Notes in Mathematics Series, (1992). Google Scholar

[9]

J. Eisenfeld and V. Lakshmikantham, Comparison principle and nonlinear contractions in abstract spaces,, J. Math. Anal. Appl., 49 (1975), 504. doi: doi:10.1016/0022-247X(75)90193-6. Google Scholar

[10]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, J. Differ. Equations, 73 (1988), 309. Google Scholar

[11]

C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations,, J. Dyn. Differ. Equations, 1 (1989), 199. doi: doi:10.1007/BF01047831. Google Scholar

[12]

C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Varieties inertielles pour l'equation de Kuramoto-Sivashinsky. (Inertial manifolds for the Kuramoto-Sivashinsky equation),, C. R. Acad. Sci., 301 (1985), 285. Google Scholar

[13]

A. Yu. Goritskiĭ and V. V. Chepyzhov, The dichotomy property of solutions of quasilinear equations in problems on inertial manifolds,, Sb. Math., 196 (2005), 485. Google Scholar

[14]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, (1981). Google Scholar

[15]

N. Koksch and S. Siegmund, Pullback attracting inertial manifolds for nonautonomous dynamical systems,, J. Dyn. Differ. Equations, 14 (2002), 889. doi: doi:10.1023/A:1020768711975. Google Scholar

[16]

M. A. Krasnoselski, Je. A. Lifshits and A. V. Sobolev, "Positive Linear Systems, the Method of Positive Operators,", Heldermann Verlag, (1989). Google Scholar

[17]

Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds,, Discrete and Continuous Dynamical Systems, 5 (1999), 233. doi: doi:10.3934/dcds.1999.5.233. Google Scholar

[18]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Progress in Nonlinear Differential Equations and Their Applications, (1995). Google Scholar

[19]

L. T. Magalhães, The spectrum of invariant sets for dissipative semiflows,, Dynamics of infinite dimensional systems, (1986), 161. Google Scholar

[20]

J. Mallet-Paret and G. R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions,, J. Am. Math. Soc., 1 (1988), 804. Google Scholar

[21]

A. V. Romanov, Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations,, Russ. Acad. Sci., 43 (1994), 31. doi: doi:10.1070/IM1994v043n01ABEH001557. Google Scholar

[22]

R. Rosa, Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation,, J. Dyn. Differ. Equations, 15 (2003), 61. doi: doi:10.1023/A:1026153311546. Google Scholar

[23]

H. Sano and N. Kunimatsu, Feedback control of semilinear diffusion systems: inertial manifolds for closed-loop systems,, IMA J. Math. Control Inform., 11 (1994), 75. doi: doi:10.1093/imamci/11.1.75. Google Scholar

[24]

H. Sano and N. Kunimatsu, An application of inertial manifold theory to boundary stabilization of semilinear diffusion systems,, J. Math. Anal. Appl., 196 (1995), 18. doi: doi:10.1006/jmaa.1995.1396. Google Scholar

[25]

G. R. Sell and Y. You, Inertial manifolds: The non-self-adjoint case,, J. Differ. Equations, 96 (1992), 203. doi: doi:10.1016/0022-0396(92)90152-D. Google Scholar

[26]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, (2002). Google Scholar

[27]

S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi and T. J. Mountziaris, Order reduction for nonlinear dynamic models of distributed reacting systems,, Journal of Process Control, 10 (2000), 177. doi: doi:10.1016/S0959-1524(99)00029-3. Google Scholar

[28]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", 2nd ed., (1997). Google Scholar

show all references

References:
[1]

L. Arnold and I. Chueshov, Order-preserving random dynamical systems: Equilibria, attractors, applications,, Dyn. Stab. Syst., 13 (1998), 265. Google Scholar

[2]

L. Boutet de Monvel, I. D. Chueshov and A. V. Rezounenko, Inertial manifolds for retarded semilinear parabolic equations,, Nonlinear Analysis, 34 (1998), 907. doi: doi:10.1016/S0362-546X(97)00569-5. Google Scholar

[3]

P. Brunovsky, Controlling the dynamics of scalar reaction diffusion equations by finite dimensional controllers,, Proc. IFIP-IIASA Conf., (1991), 22. Google Scholar

[4]

S. N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285. doi: doi:10.1016/0022-0396(88)90007-1. Google Scholar

[5]

I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dyn. Differ. Equations, 13 (2001), 355. doi: doi:10.1023/A:1016684108862. Google Scholar

[6]

C. M. Dafermos, An invariance principle for compact processes,, J. Differ. Equations, 9 (1971), 239. Google Scholar

[7]

C. M. Dafermos, Semiflows associated with compact and uniform processes,, Math. Systems Theory, 8 (1975), 142. doi: doi:10.1007/BF01762184. Google Scholar

[8]

D. Daners and P. Koch Medina, "Abstract Evolution Equations, Periodic Problems and Application,", Pitman Research Notes in Mathematics Series, (1992). Google Scholar

[9]

J. Eisenfeld and V. Lakshmikantham, Comparison principle and nonlinear contractions in abstract spaces,, J. Math. Anal. Appl., 49 (1975), 504. doi: doi:10.1016/0022-247X(75)90193-6. Google Scholar

[10]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, J. Differ. Equations, 73 (1988), 309. Google Scholar

[11]

C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations,, J. Dyn. Differ. Equations, 1 (1989), 199. doi: doi:10.1007/BF01047831. Google Scholar

[12]

C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Varieties inertielles pour l'equation de Kuramoto-Sivashinsky. (Inertial manifolds for the Kuramoto-Sivashinsky equation),, C. R. Acad. Sci., 301 (1985), 285. Google Scholar

[13]

A. Yu. Goritskiĭ and V. V. Chepyzhov, The dichotomy property of solutions of quasilinear equations in problems on inertial manifolds,, Sb. Math., 196 (2005), 485. Google Scholar

[14]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, (1981). Google Scholar

[15]

N. Koksch and S. Siegmund, Pullback attracting inertial manifolds for nonautonomous dynamical systems,, J. Dyn. Differ. Equations, 14 (2002), 889. doi: doi:10.1023/A:1020768711975. Google Scholar

[16]

M. A. Krasnoselski, Je. A. Lifshits and A. V. Sobolev, "Positive Linear Systems, the Method of Positive Operators,", Heldermann Verlag, (1989). Google Scholar

[17]

Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds,, Discrete and Continuous Dynamical Systems, 5 (1999), 233. doi: doi:10.3934/dcds.1999.5.233. Google Scholar

[18]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Progress in Nonlinear Differential Equations and Their Applications, (1995). Google Scholar

[19]

L. T. Magalhães, The spectrum of invariant sets for dissipative semiflows,, Dynamics of infinite dimensional systems, (1986), 161. Google Scholar

[20]

J. Mallet-Paret and G. R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions,, J. Am. Math. Soc., 1 (1988), 804. Google Scholar

[21]

A. V. Romanov, Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations,, Russ. Acad. Sci., 43 (1994), 31. doi: doi:10.1070/IM1994v043n01ABEH001557. Google Scholar

[22]

R. Rosa, Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation,, J. Dyn. Differ. Equations, 15 (2003), 61. doi: doi:10.1023/A:1026153311546. Google Scholar

[23]

H. Sano and N. Kunimatsu, Feedback control of semilinear diffusion systems: inertial manifolds for closed-loop systems,, IMA J. Math. Control Inform., 11 (1994), 75. doi: doi:10.1093/imamci/11.1.75. Google Scholar

[24]

H. Sano and N. Kunimatsu, An application of inertial manifold theory to boundary stabilization of semilinear diffusion systems,, J. Math. Anal. Appl., 196 (1995), 18. doi: doi:10.1006/jmaa.1995.1396. Google Scholar

[25]

G. R. Sell and Y. You, Inertial manifolds: The non-self-adjoint case,, J. Differ. Equations, 96 (1992), 203. doi: doi:10.1016/0022-0396(92)90152-D. Google Scholar

[26]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, (2002). Google Scholar

[27]

S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi and T. J. Mountziaris, Order reduction for nonlinear dynamic models of distributed reacting systems,, Journal of Process Control, 10 (2000), 177. doi: doi:10.1016/S0959-1524(99)00029-3. Google Scholar

[28]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", 2nd ed., (1997). Google Scholar

[1]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[2]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[3]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[4]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[5]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020065

[6]

Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435

[7]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[8]

Roberta Fabbri, Sylvia Novo, Carmen Núñez, Rafael Obaya. Null controllable sets and reachable sets for nonautonomous linear control systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1069-1094. doi: 10.3934/dcdss.2016042

[9]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[10]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[11]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[12]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[13]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-24. doi: 10.3934/dcdss.2020092

[14]

Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831

[15]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[16]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

[17]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[18]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[19]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[20]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]