March  2011, 10(2): 639-651. doi: 10.3934/cpaa.2011.10.639

Uniform attractor for non-autonomous nonlinear Schrödinger equation

1. 

Universite de Picardie Jules Verne, LAMFA UMR 7352, 33 rue Saint-Leu, 80039 Amiens cedex

2. 

Département de Mathématiques, Faculté des Sciences de Monastir, Av. de l'environement, 5000 Monastir, Tunisia

Received  March 2010 Revised  September 2010 Published  December 2010

We consider a weakly coupled system of nonlinear Schrödinger equations which models a Bose Einstein condensate with an impurity. The first equation is dissipative, while the second one is conservative. We consider this dynamical system into the framework of non-autonomous dynamical systems, the solution to the conservative equation being the symbol of the semi-process. We prove that the first equation possesses a uniform attractor, which attracts the solutions for the weak topology of the underlying energy space. We then study the limit of this attractor when the coupling parameter converges towards $0$.
Citation: Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639
References:
[1]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$,, Appl. Math. Lett, 12 (1999), 45. doi: doi:10.1016/S0893-9659(98)00170-0.

[2]

A. Babin and M. Vishik, "Attractors of Evolution Equations," Nauka, Moscow 1989; English transl., Stud. Math. Appl., (1992).

[3]

J. Ball, Global attractors for damped semilinear wave equations, partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 31. doi: doi:10.3934/dcds.2004.10.31.

[4]

T. Cazenave, "Semilinear Schrödinger Equations," vol 10,, Courant Lectures Notes in Mathematics, (2003).

[5]

V. V. Chepyzhov and M. I. Vishik, Attractor of non-autonomous dynamical systems and their dimension,, J. Math. Pures Appl., 73 (1994), 279.

[6]

J.-M. Ghidaglia, Finite dimensional behavior for the weakly damped driven Schrödinger equations,, Ann. Inst. Henri Poincar\'e, 5 (1988), 365.

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, Applicable Anal., 60 (1996), 99.

[8]

P. Lauren\c cot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^N, N\leq 3$, , No DEA, 2 (1995), 357. doi: doi:10.1007/BF01261181.

[9]

A. Miranville and S. Zelik, "Attractors For Dissipative Partial Differential Equations In Bounded And Unbounded Domains,", Handbook of Differential Equations: Evolutionary Equations, (2008), 103.

[10]

I. Moise, R. Rosa and X. Wang, Attractors For noncompact nonautonomous systems via energy equations,, Disrete Contin. Dyn. Syst., 10 (2004), 473. doi: doi:10.3934/dcds.2004.10.473.

[11]

W. Kechiche, Ph D thesis,, in preparation., ().

[12]

G. Raugel, "Global Attractor in Partial Differential Equations. Handbook of Dynamical Systems,", Vol. 2, (2002), 885.

[13]

R. Rosa, The global attractor of a weakly damped, forced Korteweg-De Vries equation in $H^1(R)$, VI workshop on partial differential equations,, Part II (Rio de Janeiro, 19 (2000), 129.

[14]

C. Sulem and P. L Sulem, "The Nonlinear Schröinger Equation. Self-focusing and Wave Collapse,", Applied Mathematical Sciences, (1999).

[15]

R. Temam, "Infinite Dimentional Dynamical Systems in Mecanics And physics,", 2nd Edition, (1997).

[16]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications,, Physica D, 88 (1995), 167. doi: doi:10.1016/0167-2789(95)00196-B.

show all references

References:
[1]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$,, Appl. Math. Lett, 12 (1999), 45. doi: doi:10.1016/S0893-9659(98)00170-0.

[2]

A. Babin and M. Vishik, "Attractors of Evolution Equations," Nauka, Moscow 1989; English transl., Stud. Math. Appl., (1992).

[3]

J. Ball, Global attractors for damped semilinear wave equations, partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 31. doi: doi:10.3934/dcds.2004.10.31.

[4]

T. Cazenave, "Semilinear Schrödinger Equations," vol 10,, Courant Lectures Notes in Mathematics, (2003).

[5]

V. V. Chepyzhov and M. I. Vishik, Attractor of non-autonomous dynamical systems and their dimension,, J. Math. Pures Appl., 73 (1994), 279.

[6]

J.-M. Ghidaglia, Finite dimensional behavior for the weakly damped driven Schrödinger equations,, Ann. Inst. Henri Poincar\'e, 5 (1988), 365.

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, Applicable Anal., 60 (1996), 99.

[8]

P. Lauren\c cot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^N, N\leq 3$, , No DEA, 2 (1995), 357. doi: doi:10.1007/BF01261181.

[9]

A. Miranville and S. Zelik, "Attractors For Dissipative Partial Differential Equations In Bounded And Unbounded Domains,", Handbook of Differential Equations: Evolutionary Equations, (2008), 103.

[10]

I. Moise, R. Rosa and X. Wang, Attractors For noncompact nonautonomous systems via energy equations,, Disrete Contin. Dyn. Syst., 10 (2004), 473. doi: doi:10.3934/dcds.2004.10.473.

[11]

W. Kechiche, Ph D thesis,, in preparation., ().

[12]

G. Raugel, "Global Attractor in Partial Differential Equations. Handbook of Dynamical Systems,", Vol. 2, (2002), 885.

[13]

R. Rosa, The global attractor of a weakly damped, forced Korteweg-De Vries equation in $H^1(R)$, VI workshop on partial differential equations,, Part II (Rio de Janeiro, 19 (2000), 129.

[14]

C. Sulem and P. L Sulem, "The Nonlinear Schröinger Equation. Self-focusing and Wave Collapse,", Applied Mathematical Sciences, (1999).

[15]

R. Temam, "Infinite Dimentional Dynamical Systems in Mecanics And physics,", 2nd Edition, (1997).

[16]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications,, Physica D, 88 (1995), 167. doi: doi:10.1016/0167-2789(95)00196-B.

[1]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-14. doi: 10.3934/dcdsb.2019036

[2]

Shengfan Zhou, Caidi Zhao, Yejuan Wang. Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1259-1277. doi: 10.3934/dcds.2008.21.1259

[3]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[4]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[5]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[6]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[7]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

[8]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[9]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[10]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[11]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[12]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2019115

[13]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[14]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[15]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[16]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[17]

Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029

[18]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[19]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[20]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]