March  2011, 10(2): 625-638. doi: 10.3934/cpaa.2011.10.625

On the collapsing sandpile problem

1. 

LAMFA CNRS UMR 6140, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex

2. 

LAMFA, CNRS UMR 6140, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex, France

Received  May 2010 Revised  September 2010 Published  December 2010

We are interested in the modeling of collapsing sandpiles. We use the collapsing model introduced by Evans, Feldman and Gariepy in [13], to provide a description of the phenomena in terms of a composition of projections onto interlocked convex sets around the set of stable sandpiles.
Citation: S. Dumont, Noureddine Igbida. On the collapsing sandpile problem. Communications on Pure & Applied Analysis, 2011, 10 (2) : 625-638. doi: 10.3934/cpaa.2011.10.625
References:
[1]

G. Aronson, L. C. Evans and Y. Wu, Fast/Slow diffusion and growing sandpiles,, J. Differential Equations, 131 (1996), 304. doi: doi:10.1006/jdeq.1996.0166. Google Scholar

[2]

P. Bak, C. Tang and K. Weisenfeld, Self-organized criticality,, Phys. Rev. A, 38 (1988), 364. doi: doi:10.1103/PhysRevA.38.364. Google Scholar

[3]

J. W. Barrett and L. Prigozhin, Dual formulation in critical state problems,, Interfaces and Free Boundaries, 8 (2006), 349. doi: doi:10.4171/IFB/147. Google Scholar

[4]

Ph. Bénilan, M. G. Crandall and A. Pazy, "Evolution Equations Governed by Accretive Operators,", Preprint book., (). Google Scholar

[5]

Ph. Bénilan, L. C. Evans and R. F. Gariepy, On some singular limits of homogeneous semigroups,, J. Evol. Equ., 3 (2003), 203. Google Scholar

[6]

J. P. Bouchaud, M. E. Cates, J. Ravi Prakash and S. F. Edwards, A model for the Dynamic of Sandpile Surfaces,, J. Phys. I France, 4 (1994), 1383. Google Scholar

[7]

G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a Measure and Applications to Low Dimensional Structures,, Calc. Var. Partial Differential Equations, 5 (1997), 37. Google Scholar

[8]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French),, North-Holland Mathematics Studies, (1973). Google Scholar

[9]

S. Dumont and N. Igbida, On a Dual Formulation for the Growing Sandpile Problem,, European Journal Applied Math., 20 (2009), 169. doi: doi:10.1017/S0956792508007754. Google Scholar

[10]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", Classics in Applied Mathematics, (1999). Google Scholar

[11]

L. C. Evans, Application of nonlinear semigroup theory to certain partial differential equations,, Nonlinear evolution equations (Proc. Sympos., (1977), 163. Google Scholar

[12]

L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer,, Current developments in mathematics, (1997), 65. Google Scholar

[13]

L. C. Evans, M. Feldman and R. F. Gariepy, Fast/Slow diffusion and collapsing sandpiles,, J. Differential Equations, 137 (1997), 166. doi: doi:10.1006/jdeq.1997.3243. Google Scholar

[14]

L. C. Evans and F. Rezakhanlou, A stochastic model for sandpiles and its continum limit,, Comm. Math. Phys., 197 (1998), 325. doi: doi:10.1007/s002200050453. Google Scholar

[15]

N. Igbida, Equivalent formulations for Monge-Kantorovich equation,, {\em Submitted}., (). Google Scholar

[16]

L. Prigozhin, Variational model of sandpile growth,, Euro. J. Appl. Math., 7 (1996), 225. doi: doi:10.1017/S0956792500002321. Google Scholar

[17]

J. E. Roberts and J.-M. Thomas, "Mixed and Hybrid Methods,", (P. G. Ciarlet and J. L. Lions eds.), (1991). Google Scholar

[18]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997). Google Scholar

show all references

References:
[1]

G. Aronson, L. C. Evans and Y. Wu, Fast/Slow diffusion and growing sandpiles,, J. Differential Equations, 131 (1996), 304. doi: doi:10.1006/jdeq.1996.0166. Google Scholar

[2]

P. Bak, C. Tang and K. Weisenfeld, Self-organized criticality,, Phys. Rev. A, 38 (1988), 364. doi: doi:10.1103/PhysRevA.38.364. Google Scholar

[3]

J. W. Barrett and L. Prigozhin, Dual formulation in critical state problems,, Interfaces and Free Boundaries, 8 (2006), 349. doi: doi:10.4171/IFB/147. Google Scholar

[4]

Ph. Bénilan, M. G. Crandall and A. Pazy, "Evolution Equations Governed by Accretive Operators,", Preprint book., (). Google Scholar

[5]

Ph. Bénilan, L. C. Evans and R. F. Gariepy, On some singular limits of homogeneous semigroups,, J. Evol. Equ., 3 (2003), 203. Google Scholar

[6]

J. P. Bouchaud, M. E. Cates, J. Ravi Prakash and S. F. Edwards, A model for the Dynamic of Sandpile Surfaces,, J. Phys. I France, 4 (1994), 1383. Google Scholar

[7]

G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a Measure and Applications to Low Dimensional Structures,, Calc. Var. Partial Differential Equations, 5 (1997), 37. Google Scholar

[8]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French),, North-Holland Mathematics Studies, (1973). Google Scholar

[9]

S. Dumont and N. Igbida, On a Dual Formulation for the Growing Sandpile Problem,, European Journal Applied Math., 20 (2009), 169. doi: doi:10.1017/S0956792508007754. Google Scholar

[10]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", Classics in Applied Mathematics, (1999). Google Scholar

[11]

L. C. Evans, Application of nonlinear semigroup theory to certain partial differential equations,, Nonlinear evolution equations (Proc. Sympos., (1977), 163. Google Scholar

[12]

L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer,, Current developments in mathematics, (1997), 65. Google Scholar

[13]

L. C. Evans, M. Feldman and R. F. Gariepy, Fast/Slow diffusion and collapsing sandpiles,, J. Differential Equations, 137 (1997), 166. doi: doi:10.1006/jdeq.1997.3243. Google Scholar

[14]

L. C. Evans and F. Rezakhanlou, A stochastic model for sandpiles and its continum limit,, Comm. Math. Phys., 197 (1998), 325. doi: doi:10.1007/s002200050453. Google Scholar

[15]

N. Igbida, Equivalent formulations for Monge-Kantorovich equation,, {\em Submitted}., (). Google Scholar

[16]

L. Prigozhin, Variational model of sandpile growth,, Euro. J. Appl. Math., 7 (1996), 225. doi: doi:10.1017/S0956792500002321. Google Scholar

[17]

J. E. Roberts and J.-M. Thomas, "Mixed and Hybrid Methods,", (P. G. Ciarlet and J. L. Lions eds.), (1991). Google Scholar

[18]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997). Google Scholar

[1]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[2]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[3]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[4]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[5]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[6]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[7]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[8]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[9]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[10]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[11]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[12]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[13]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[14]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[15]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[16]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[17]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[18]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[19]

Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

[20]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]