March  2011, 10(2): 541-559. doi: 10.3934/cpaa.2011.10.541

A singular limit in a nonlinear problem arising in electromagnetism

1. 

Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin

Received  February 2010 Revised  May 2010 Published  December 2010

This paper deals with a generally nonlinear mixed-type initial-boundary value problem for the description of the electromagnetic field in a conducting medium that is surrounded by an insulating medium with a high dielectric permittivity. The main goals are the existence, uniqueness and the asymptotic behavior of the solutions to this system.
Citation: Frank Jochmann. A singular limit in a nonlinear problem arising in electromagnetism. Communications on Pure & Applied Analysis, 2011, 10 (2) : 541-559. doi: 10.3934/cpaa.2011.10.541
References:
[1]

J. M. Ball, Strongly continuous semi groups, weak solutions and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370. Google Scholar

[2]

J. W. Barrett and L. Prigozhin, Bean's critical-state model as the $p\rightarrow\infty$ limit of an evolutionary $p$-Laplace equation,, Nonlinear Anal., 42 (2000), 977. doi: doi:10.1016/S0362-546X(99)00147-9. Google Scholar

[3]

C. P. Bean, Magnetization of high-field superconductors,, Rev. Mod. Phys., 36 (1964), 31. doi: doi:10.1103/RevModPhys.36.31. Google Scholar

[4]

F. Jochmann, Existence of weak solutions to the drift-diffusion model for semiconductors coupled with Maxwell's equations,, J. Math. Anal. Appl., 204 (1996), 655. doi: doi:10.1006/jmaa.1996.0460. Google Scholar

[5]

F. Jochmann, A semi-static limit for Maxwell's equations in an exterior domain,, Comm. Part. Diff. Equations, 23 (1998), 2035. doi: doi:10.1080/03605309808821410. Google Scholar

[6]

F. Jochmann, Regularity of weak solutions to Maxwell's Equations with mixed boundary conditions,, Math. Meth. Appl. Sci., 22 (1999), 1255. doi: doi:10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N. Google Scholar

[7]

F. Jochmann, Energy decay of solutions to Maxwells equations with conductivity and polarization,, J. Diff. Equations, 203 (2004), 232. doi: doi:10.1016/j.jde.2004.05.005. Google Scholar

[8]

F. Jochmann, On a first-order hyperbolic systems including Bean's model for superconductors with displacement current,, J. Diff. Equations, 246 (2009), 2151. doi: doi:10.1016/j.jde.2008.12.023. Google Scholar

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", 2$^{nd}$ edition, (). Google Scholar

[10]

R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151. doi: doi:10.1007/BF01161700. Google Scholar

[11]

C. Weber, A local compactness theorem for Maxwell's equations,, Math. Methods Appl. Sci., 2 (1980), 12. doi: doi:10.1002/mma.1670020103. Google Scholar

[12]

H. M. Yin, On a $p$-Laplacian type of evolution system and applications to Bean's model in the type-II superconductivity theory,, Quarterly. Appl. Math., 59 (2001), 47. Google Scholar

[13]

H. M. Yin, On a singular limit problem for nonlinear Maxwell equations,, J. Diff. Equations, 156 (1999), 355. doi: doi:10.1006/jdeq.1998.3608. Google Scholar

[14]

H. M. Yin, B. Q. Li and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Continuous Dynam. Systems - B, 8 (2002), 781. Google Scholar

show all references

References:
[1]

J. M. Ball, Strongly continuous semi groups, weak solutions and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370. Google Scholar

[2]

J. W. Barrett and L. Prigozhin, Bean's critical-state model as the $p\rightarrow\infty$ limit of an evolutionary $p$-Laplace equation,, Nonlinear Anal., 42 (2000), 977. doi: doi:10.1016/S0362-546X(99)00147-9. Google Scholar

[3]

C. P. Bean, Magnetization of high-field superconductors,, Rev. Mod. Phys., 36 (1964), 31. doi: doi:10.1103/RevModPhys.36.31. Google Scholar

[4]

F. Jochmann, Existence of weak solutions to the drift-diffusion model for semiconductors coupled with Maxwell's equations,, J. Math. Anal. Appl., 204 (1996), 655. doi: doi:10.1006/jmaa.1996.0460. Google Scholar

[5]

F. Jochmann, A semi-static limit for Maxwell's equations in an exterior domain,, Comm. Part. Diff. Equations, 23 (1998), 2035. doi: doi:10.1080/03605309808821410. Google Scholar

[6]

F. Jochmann, Regularity of weak solutions to Maxwell's Equations with mixed boundary conditions,, Math. Meth. Appl. Sci., 22 (1999), 1255. doi: doi:10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N. Google Scholar

[7]

F. Jochmann, Energy decay of solutions to Maxwells equations with conductivity and polarization,, J. Diff. Equations, 203 (2004), 232. doi: doi:10.1016/j.jde.2004.05.005. Google Scholar

[8]

F. Jochmann, On a first-order hyperbolic systems including Bean's model for superconductors with displacement current,, J. Diff. Equations, 246 (2009), 2151. doi: doi:10.1016/j.jde.2008.12.023. Google Scholar

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", 2$^{nd}$ edition, (). Google Scholar

[10]

R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151. doi: doi:10.1007/BF01161700. Google Scholar

[11]

C. Weber, A local compactness theorem for Maxwell's equations,, Math. Methods Appl. Sci., 2 (1980), 12. doi: doi:10.1002/mma.1670020103. Google Scholar

[12]

H. M. Yin, On a $p$-Laplacian type of evolution system and applications to Bean's model in the type-II superconductivity theory,, Quarterly. Appl. Math., 59 (2001), 47. Google Scholar

[13]

H. M. Yin, On a singular limit problem for nonlinear Maxwell equations,, J. Diff. Equations, 156 (1999), 355. doi: doi:10.1006/jdeq.1998.3608. Google Scholar

[14]

H. M. Yin, B. Q. Li and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Continuous Dynam. Systems - B, 8 (2002), 781. Google Scholar

[1]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[2]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[3]

Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754

[4]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[5]

Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic & Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030

[6]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[7]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[8]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[9]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[10]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[11]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[12]

Monica Conti, Vittorino Pata, M. Squassina. Singular limit of dissipative hyperbolic equations with memory. Conference Publications, 2005, 2005 (Special) : 200-208. doi: 10.3934/proc.2005.2005.200

[13]

José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873

[14]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[15]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[16]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[17]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[18]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[19]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019181

[20]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]