January  2011, 10(1): 339-359. doi: 10.3934/cpaa.2011.10.339

On the global attractor of the Trojan Y Chromosome model

1. 

Clarkson University, Department of Mathematics & Computer Science, 106 Technology Advancement Center, Potsdam, NY 13676, USA Government

2. 

Mathematical Biosciences Institute, The Ohio State University, 1735 Neil Ave, 3rd Floor, Columbus, OH 43210, USA Government

Received  January 2010 Revised  June 2010 Published  November 2010

We consider the Trojan Y Chromosome (TYC) model for eradication of invasive species in population dynamics. We present global estimates for the TYC system in a spatial domain. In this work we prove the existence of a global attractor for the system. We derive uniform estimates to tackle the question of asymptotic compactness of the semi-group for the TYC model in $H^2(\Omega)$. This along with the existence of a bounded absorbing set, which we also derive, demonstrates the existence of a global attractor for the TYC model. The present analysis reveals that extinction of an invasive species is always possible to achieve irrespective of geometric considerations of the domain. This result is valid for TYC systems in which advection is negligible. This theoretical work lays the foundation for experimental studies of the application of the TYC eradication strategy in spatial ecology, since the outcome is in principle guaranteed.
Citation: Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339
References:
[1]

P. Brown and T. I. Walker, CARPSIM: stochastic simulation modelling of wild carp (Cyprinus carpio L.) population dynamics, with applications to pest control,, Ecological Modelling, 176 (2004), 83. doi: doi:10.1016/j.ecolmodel.2003.11.009. Google Scholar

[2]

R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley, (2003). Google Scholar

[3]

"Economic Research Service, United States Department of Agriculture,", Agricultural Outlook: Statistical Indicators, May 2009., Retrieved on 06/01/2009 from \url{http://www.ers.usda.gov/publications/agoutlook/aotables/}., (). Google Scholar

[4]

J. B. Gutierrez, "Mathematical Analysis of The Use Of Trojan Sex Chromosomes as Means of Eradication of Invasive Species,", PhD thesis, (2009). Google Scholar

[5]

J. B. Gutierrez, M. K. Hurdal, R. D. Parshad and J. L. Teem, Analysis of the trojan y chromosome model for eradication of invasive species in a dendritic riverine system,, Submitted for publication, (2010). Google Scholar

[6]

J. B. Gutierrez and J. L. Teem, A model describing the effect of sex-reversed YY fish in an established wild population: the use of a Trojan Y chromosome to cause extinction of an introduced exotic species,, Journal of Theoretical Biology, 241 (2006), 333. doi: doi:10.1016/j.jtbi.2005.11.032. Google Scholar

[7]

J. E. Hill and C. E. Cichra, Eradication of a reproducing population of Convict Cichlids, Cichlasoma nigrofasciatum (Cichlidae) in North-Central Florida,, Florida Scientist, 68 (2005), 65. Google Scholar

[8]

J. J. Hoover, K. J. Killgore and A. F. Cofrancesco, Suckermouth catfishes: threats to aquatic ecosystems of the United States?, Aquatic Nuisance Species Research, 4 (2004), 1. Google Scholar

[9]

R. D. Howard, J. A. DeWoody and W. M. Muir, Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish,, Proceedings of the National Academy of Sciences, 101 (2004), 2934. doi: doi:10.1073/pnas.0306285101. Google Scholar

[10]

M. A. Hurley, P. Matthiesen and A. D. Pickering, A model for environmental sex reversal in fish,, Journal of Theoretical Biology, 227 (2004), 159. doi: doi:10.1016/j.jtbi.2003.10.010. Google Scholar

[11]

W. M. Muir and R. D. Howard, Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis,, Proceedings of the National Academy of Sciences, 96 (1999), 13853. doi: doi:10.1073/pnas.96.24.13853. Google Scholar

[12]

J. H. Myers, D. Simberloff, A. M. Kuris and J. R. Carey, Eradication revisited: dealing with exotic species,, Trends in Ecology & Evolution, 15 (2000), 316. doi: doi:10.1016/S0169-5347(00)01914-5. Google Scholar

[13]

J. J. Nagler, J. Bouma, G. H. Thorgaard and D. D. Dauble, High incidence of a male-specific genetic marker in phenotypic female Chinook salmon from the Columbia river,, Environmental Health Perspectives, 109 (2001), 67. doi: doi:10.2307/3434923. Google Scholar

[14]

O. T. A., Harmful non-indigenous species in the United States,, OTA-F-565 U.S. Congress, (1993). Google Scholar

[15]

P. Palace, R. E. Evans, K. Wautierand L. Vandenbyllardt, W. W. Vandersteen and K. Kidd, Induction of vitellogenin and histological effects in wild fathead minnows from a lake experimentally treated with the synthetic estrogen, ethynylestradiol,, Water Quality Research Journal Canada, 37 (2002), 637. Google Scholar

[16]

R. D. Parshad and J. B. Gutierrez, On the well-posedness of the TYC system,, Submitted for publication, (2010). Google Scholar

[17]

D. Pimentel, R. Zuniga and D. Morrison, Update on the environmental and economic costs associated with alien-invasive species in the united states,, Ecological Economics, 52 (2005), 273. Google Scholar

[18]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems,", Cambridge University Press, (2001). Google Scholar

[19]

P. L. Shafland, Exotic fish assessments: an alternative view,, Reviews in Fisheries Science, 4 (1996), 123. doi: doi:10.1080/10641269609388582. Google Scholar

[20]

P. L. Shafland, Exotic fishes of Florida 1994,, Reviews in Fisheries Science, 4 (1996), 101. doi: doi:10.1080/10641269609388581. Google Scholar

[21]

P. L. Shafland and K. L. Foote, A reproducing population of Serrasalmus humeralis Valenciennes in southern Florida,, Florida Scientist, 42 (1979), 206. Google Scholar

[22]

W. L. Shelton, Broodstock development for monosex production of grass carp,, Aquaculture, 57 (1986), 311. doi: doi:10.1016/0044-8486(86)90209-7. Google Scholar

[23]

R. Temam, "Navier Stokes Equations and Nonlinear Functional Analysis,", Society for Industrial and Applied Mathematics, (1985). Google Scholar

[24]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1998). Google Scholar

show all references

References:
[1]

P. Brown and T. I. Walker, CARPSIM: stochastic simulation modelling of wild carp (Cyprinus carpio L.) population dynamics, with applications to pest control,, Ecological Modelling, 176 (2004), 83. doi: doi:10.1016/j.ecolmodel.2003.11.009. Google Scholar

[2]

R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley, (2003). Google Scholar

[3]

"Economic Research Service, United States Department of Agriculture,", Agricultural Outlook: Statistical Indicators, May 2009., Retrieved on 06/01/2009 from \url{http://www.ers.usda.gov/publications/agoutlook/aotables/}., (). Google Scholar

[4]

J. B. Gutierrez, "Mathematical Analysis of The Use Of Trojan Sex Chromosomes as Means of Eradication of Invasive Species,", PhD thesis, (2009). Google Scholar

[5]

J. B. Gutierrez, M. K. Hurdal, R. D. Parshad and J. L. Teem, Analysis of the trojan y chromosome model for eradication of invasive species in a dendritic riverine system,, Submitted for publication, (2010). Google Scholar

[6]

J. B. Gutierrez and J. L. Teem, A model describing the effect of sex-reversed YY fish in an established wild population: the use of a Trojan Y chromosome to cause extinction of an introduced exotic species,, Journal of Theoretical Biology, 241 (2006), 333. doi: doi:10.1016/j.jtbi.2005.11.032. Google Scholar

[7]

J. E. Hill and C. E. Cichra, Eradication of a reproducing population of Convict Cichlids, Cichlasoma nigrofasciatum (Cichlidae) in North-Central Florida,, Florida Scientist, 68 (2005), 65. Google Scholar

[8]

J. J. Hoover, K. J. Killgore and A. F. Cofrancesco, Suckermouth catfishes: threats to aquatic ecosystems of the United States?, Aquatic Nuisance Species Research, 4 (2004), 1. Google Scholar

[9]

R. D. Howard, J. A. DeWoody and W. M. Muir, Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish,, Proceedings of the National Academy of Sciences, 101 (2004), 2934. doi: doi:10.1073/pnas.0306285101. Google Scholar

[10]

M. A. Hurley, P. Matthiesen and A. D. Pickering, A model for environmental sex reversal in fish,, Journal of Theoretical Biology, 227 (2004), 159. doi: doi:10.1016/j.jtbi.2003.10.010. Google Scholar

[11]

W. M. Muir and R. D. Howard, Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis,, Proceedings of the National Academy of Sciences, 96 (1999), 13853. doi: doi:10.1073/pnas.96.24.13853. Google Scholar

[12]

J. H. Myers, D. Simberloff, A. M. Kuris and J. R. Carey, Eradication revisited: dealing with exotic species,, Trends in Ecology & Evolution, 15 (2000), 316. doi: doi:10.1016/S0169-5347(00)01914-5. Google Scholar

[13]

J. J. Nagler, J. Bouma, G. H. Thorgaard and D. D. Dauble, High incidence of a male-specific genetic marker in phenotypic female Chinook salmon from the Columbia river,, Environmental Health Perspectives, 109 (2001), 67. doi: doi:10.2307/3434923. Google Scholar

[14]

O. T. A., Harmful non-indigenous species in the United States,, OTA-F-565 U.S. Congress, (1993). Google Scholar

[15]

P. Palace, R. E. Evans, K. Wautierand L. Vandenbyllardt, W. W. Vandersteen and K. Kidd, Induction of vitellogenin and histological effects in wild fathead minnows from a lake experimentally treated with the synthetic estrogen, ethynylestradiol,, Water Quality Research Journal Canada, 37 (2002), 637. Google Scholar

[16]

R. D. Parshad and J. B. Gutierrez, On the well-posedness of the TYC system,, Submitted for publication, (2010). Google Scholar

[17]

D. Pimentel, R. Zuniga and D. Morrison, Update on the environmental and economic costs associated with alien-invasive species in the united states,, Ecological Economics, 52 (2005), 273. Google Scholar

[18]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems,", Cambridge University Press, (2001). Google Scholar

[19]

P. L. Shafland, Exotic fish assessments: an alternative view,, Reviews in Fisheries Science, 4 (1996), 123. doi: doi:10.1080/10641269609388582. Google Scholar

[20]

P. L. Shafland, Exotic fishes of Florida 1994,, Reviews in Fisheries Science, 4 (1996), 101. doi: doi:10.1080/10641269609388581. Google Scholar

[21]

P. L. Shafland and K. L. Foote, A reproducing population of Serrasalmus humeralis Valenciennes in southern Florida,, Florida Scientist, 42 (1979), 206. Google Scholar

[22]

W. L. Shelton, Broodstock development for monosex production of grass carp,, Aquaculture, 57 (1986), 311. doi: doi:10.1016/0044-8486(86)90209-7. Google Scholar

[23]

R. Temam, "Navier Stokes Equations and Nonlinear Functional Analysis,", Society for Industrial and Applied Mathematics, (1985). Google Scholar

[24]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1998). Google Scholar

[1]

Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

[2]

Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099

[3]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[4]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[5]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[6]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[7]

Sebastian Aniţa, Vincenzo Capasso, Ana-Maria Moşneagu. Global eradication for spatially structured populations by regional control. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2511-2533. doi: 10.3934/dcdsb.2018263

[8]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[9]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[10]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[11]

Chris Cosner, Andrew L. Nevai. Spatial population dynamics in a producer-scrounger model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1591-1607. doi: 10.3934/dcdsb.2015.20.1591

[12]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[13]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[14]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[15]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[16]

Kuang-Hui Lin, Yuan Lou, Chih-Wen Shih, Tze-Hung Tsai. Global dynamics for two-species competition in patchy environment. Mathematical Biosciences & Engineering, 2014, 11 (4) : 947-970. doi: 10.3934/mbe.2014.11.947

[17]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[18]

Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010

[19]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[20]

Karyn L. Sutton, H.T. Banks, Carlos Castillo-Chávez. Estimation of invasive pneumococcal disease dynamics parameters and the impact of conjugate vaccination in Australia. Mathematical Biosciences & Engineering, 2008, 5 (1) : 175-204. doi: 10.3934/mbe.2008.5.175

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]