November  2011, 10(6): 1823-1847. doi: 10.3934/cpaa.2011.10.1823

A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures

1. 

Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warsaw, Poland

Received  June 2010 Revised  April 2011 Published  May 2011

An initial-boundary-value problem for the sixth order Cahn-Hilliard type equation in 3-D is studied. The problem describes phase transition dynamics in ternary oil-water-surfactant systems. It is based on the Landau-Ginzburg theory proposed for such systems by G. Gompper et al. We prove that the problem under consideration is well posed in the sense that it admits a unique global smooth solution which depends continuously on the initial datum.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823
References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[4]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435. Google Scholar

[5]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E, 70 (2004). Google Scholar

[6]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). Google Scholar

[7]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E, 50 (1994), 1325. Google Scholar

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289. Google Scholar

[9]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301. Google Scholar

[10]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems,, Phys. Rev. Lett., 65 (1990), 1116. Google Scholar

[11]

G. Gompper and M. Schick, Self-assembling amphiphilic system,, in, (1994), 1. Google Scholar

[12]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-sur-factant mixtures,, Phys. Rev. A, 46 (1992), 4836. Google Scholar

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations,, SIAM J. Appl. Math., 69 (2008), 348. Google Scholar

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, (2011), (2011). Google Scholar

[15]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications,", Vol. I, (1972). Google Scholar

[16]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). Google Scholar

[17]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133. Google Scholar

[18]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Ste\-klov, 83 (1965), 1. Google Scholar

show all references

References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[4]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435. Google Scholar

[5]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E, 70 (2004). Google Scholar

[6]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). Google Scholar

[7]

G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases,, Phys. Rev. E, 50 (1994), 1325. Google Scholar

[8]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289. Google Scholar

[9]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301. Google Scholar

[10]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems,, Phys. Rev. Lett., 65 (1990), 1116. Google Scholar

[11]

G. Gompper and M. Schick, Self-assembling amphiphilic system,, in, (1994), 1. Google Scholar

[12]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-sur-factant mixtures,, Phys. Rev. A, 46 (1992), 4836. Google Scholar

[13]

M. D. Korzec, P. L. Evans, A. Münch and B. Wagner, Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard type equations,, SIAM J. Appl. Math., 69 (2008), 348. Google Scholar

[14]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, (2011), (2011). Google Scholar

[15]

J.-L. Lions and E. Magenes, "Nonhomogeneous Boundary Value Problems and Applications,", Vol. I, (1972). Google Scholar

[16]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). Google Scholar

[17]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133. Google Scholar

[18]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Ste\-klov, 83 (1965), 1. Google Scholar

[1]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[2]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[3]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations & Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[4]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[5]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[6]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[7]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[8]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[9]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[10]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[11]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[12]

Pablo Álvarez-Caudevilla. Existence and multiplicity of stationary solutions for a Cahn--Hilliard-type equation in $\mathbb{R}^N$. Conference Publications, 2015, 2015 (special) : 10-18. doi: 10.3934/proc.2015.0010

[13]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[14]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[15]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[16]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 609-629. doi: 10.3934/dcds.2007.19.609

[17]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[18]

Ciprian G. Gal. On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 131-167. doi: 10.3934/dcds.2017006

[19]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[20]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (25)

Other articles
by authors

[Back to Top]