November  2011, 10(6): 1747-1762. doi: 10.3934/cpaa.2011.10.1747

A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities

1. 

Mathematisches Institut, Universität zu Köln, 50923 Köln, Germany

2. 

Mathematical Reviews, 416 Fourth Street, P.O. Box 8604, Ann Arbor, Michigan 48107-8604, United States

Received  March 2011 Revised  April 2011 Published  May 2011

We compare entire weak solutions $u$ and $v$ of quasilinear partial differential inequalities on $R^n$ without any assumptions on their behaviour at infinity and show among other things, that they must coincide if they are ordered, i.e. if they satisfy $u\geq v$ in $R^n$. For the particular case that $v\equiv 0$ we recover some known Liouville type results. Model cases for the equations involve the $p$-Laplacian operator for $p\in[1,2]$ and the mean curvature operator.
Citation: Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747
References:
[1]

I. Birindelli and F. Demengel, Some Liouville theorems for the p-Laplacian,, Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, (2001), 35. Google Scholar

[2]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271. Google Scholar

[3]

L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type,, Ann. Inst. H. Poincar\'e Anal. Non Lin巃ire, 26 (2009), 1099. Google Scholar

[4]

L. Dupaigne and A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities,, Nonlinear Anal., 70 (2009), 2882. Google Scholar

[5]

A. Farina and J. Serrin, Entire solutions of completely coercive quasilinear elliptic equations,, J. Differ. Eqs., 250 (2011), 4367. Google Scholar

[6]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. Google Scholar

[7]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,", The Clarendon Press, (1993). Google Scholar

[8]

A. G. Kartsatos and R. D. Mabry, Controlling the space with preassigned responses,, J. Optim. Theory Appl., 54 (1987), 517. Google Scholar

[9]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis,", Prentice-Hall, (1970). Google Scholar

[10]

V. A. Kondrat$'$ev and E. M. Landis, Semilinear second-order equations with nonnegative characteristic form,, Mat. Zametki, 44 (1988), 457. Google Scholar

[11]

V. V. Kurta, Qualitative properties of solutions of some classes of second-order quasilinear elliptic equations,, Differentsial$'$nye Uravneniya, 28 (1992), 867. Google Scholar

[12]

V. V. Kurta, "Some Problems of Qualitative Theory for Nonlinear Second-order Equations,", Doctoral Dissert., (1994). Google Scholar

[13]

V. V. Kurta, On the comparison principle for second-order quasilinear elliptic equations,, Differentsial$'$nye Uravneniya, 31 (1995), 289. Google Scholar

[14]

V. V. Kurta, Comparison principle for solutions of parabolic inequalities,, C. R. Acad. Sci. Paris, 322 (1996), 1175. Google Scholar

[15]

V. V. Kurta, Comparison principle and analogues of the Phragmén-Lindelöf theorem for solutions of parabolic inequalities,, Appl. Anal., 71 (1999), 301. Google Scholar

[16]

V. V. Kurta, On the absence of positive solutions of elliptic equations,, Mat. Zametki, 65 (1999), 552. Google Scholar

[17]

J.-L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,", Dunod, (1969). Google Scholar

[18]

V. M. Miklyukov, A new approach to the Bernstein theorem and to related questions of equations of minimal surface type,, Mat. Sb. (N.S.), 108(150) (1979), 268. Google Scholar

[19]

E. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities,, Dokl. Akad. Nauk, 359 (1998), 456. Google Scholar

[20]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79. Google Scholar

[21]

J. Serrin, Entire solutions of quasilinear elliptic equations,, J. Math. Anal. Appl., 352 (2009), 3. Google Scholar

show all references

References:
[1]

I. Birindelli and F. Demengel, Some Liouville theorems for the p-Laplacian,, Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, (2001), 35. Google Scholar

[2]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271. Google Scholar

[3]

L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type,, Ann. Inst. H. Poincar\'e Anal. Non Lin巃ire, 26 (2009), 1099. Google Scholar

[4]

L. Dupaigne and A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities,, Nonlinear Anal., 70 (2009), 2882. Google Scholar

[5]

A. Farina and J. Serrin, Entire solutions of completely coercive quasilinear elliptic equations,, J. Differ. Eqs., 250 (2011), 4367. Google Scholar

[6]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. Google Scholar

[7]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,", The Clarendon Press, (1993). Google Scholar

[8]

A. G. Kartsatos and R. D. Mabry, Controlling the space with preassigned responses,, J. Optim. Theory Appl., 54 (1987), 517. Google Scholar

[9]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis,", Prentice-Hall, (1970). Google Scholar

[10]

V. A. Kondrat$'$ev and E. M. Landis, Semilinear second-order equations with nonnegative characteristic form,, Mat. Zametki, 44 (1988), 457. Google Scholar

[11]

V. V. Kurta, Qualitative properties of solutions of some classes of second-order quasilinear elliptic equations,, Differentsial$'$nye Uravneniya, 28 (1992), 867. Google Scholar

[12]

V. V. Kurta, "Some Problems of Qualitative Theory for Nonlinear Second-order Equations,", Doctoral Dissert., (1994). Google Scholar

[13]

V. V. Kurta, On the comparison principle for second-order quasilinear elliptic equations,, Differentsial$'$nye Uravneniya, 31 (1995), 289. Google Scholar

[14]

V. V. Kurta, Comparison principle for solutions of parabolic inequalities,, C. R. Acad. Sci. Paris, 322 (1996), 1175. Google Scholar

[15]

V. V. Kurta, Comparison principle and analogues of the Phragmén-Lindelöf theorem for solutions of parabolic inequalities,, Appl. Anal., 71 (1999), 301. Google Scholar

[16]

V. V. Kurta, On the absence of positive solutions of elliptic equations,, Mat. Zametki, 65 (1999), 552. Google Scholar

[17]

J.-L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,", Dunod, (1969). Google Scholar

[18]

V. M. Miklyukov, A new approach to the Bernstein theorem and to related questions of equations of minimal surface type,, Mat. Sb. (N.S.), 108(150) (1979), 268. Google Scholar

[19]

E. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities,, Dokl. Akad. Nauk, 359 (1998), 456. Google Scholar

[20]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79. Google Scholar

[21]

J. Serrin, Entire solutions of quasilinear elliptic equations,, J. Math. Anal. Appl., 352 (2009), 3. Google Scholar

[1]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[2]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[3]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[4]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[5]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[6]

Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493

[7]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[8]

Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577

[9]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[10]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[11]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[12]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[13]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[14]

Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949

[15]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[16]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[17]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[18]

Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117

[19]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[20]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]