November  2011, 10(6): 1707-1714. doi: 10.3934/cpaa.2011.10.1707

Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations

1. 

School of Mathematics and Information Science, Weifang University, Weifang 261061, China

Received  June 2010 Revised  January 2011 Published  May 2011

In this paper, we use the Perron method to prove the existence of viscosity solutions with asymptotic behavior at infinity to fully nonlinear uniformly elliptic equations in $R^n$.
Citation: Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707
References:
[1]

J. G. Bao, Fully nonlinear elliptic equations on general domains,, Canad. J. Math., 54 (2002), 1121. doi: 10.4153/CJM-2002-042-9. Google Scholar

[2]

Luis A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", Colloquium Publications, (1995). Google Scholar

[3]

X. Cabré and Luis A. Caffarelli, Regularity for viscosity solutions of fully nonlinear equations $F(D^2u)=0$,, Topol. Methods Nonlinear Anal., 6 (1995), 31. Google Scholar

[4]

L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov,, Comm. Pure Appl. Math., 56 (2003), 549. doi: 10.1002/cpa.10067. Google Scholar

[5]

L. M. Dai and J. G. Bao, Entire solutions with asymptotic behavior of Hessian equations,, Adv. Math. (China), (). Google Scholar

[6]

Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations,, Comm. Pure Appl. Math., 35 (1982), 333. doi: 10.1002/cpa.3160350303. Google Scholar

[7]

D. Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2$^{nd}$ edition, (1983). Google Scholar

[8]

H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs,, Comm. Pure Appl. Math., 42 (1989), 15. doi: 10.1002/cpa.3160420103. Google Scholar

[9]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain. (Russian),, Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75. Google Scholar

[10]

O. Savin, Entire solutions to a class of fully nonlinear elliptic equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 369. Google Scholar

[11]

B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE,, Arch. Ration. Mech. Anal., 195 (2010), 579. doi: 10.1007/s00205-009-0218-9. Google Scholar

show all references

References:
[1]

J. G. Bao, Fully nonlinear elliptic equations on general domains,, Canad. J. Math., 54 (2002), 1121. doi: 10.4153/CJM-2002-042-9. Google Scholar

[2]

Luis A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", Colloquium Publications, (1995). Google Scholar

[3]

X. Cabré and Luis A. Caffarelli, Regularity for viscosity solutions of fully nonlinear equations $F(D^2u)=0$,, Topol. Methods Nonlinear Anal., 6 (1995), 31. Google Scholar

[4]

L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov,, Comm. Pure Appl. Math., 56 (2003), 549. doi: 10.1002/cpa.10067. Google Scholar

[5]

L. M. Dai and J. G. Bao, Entire solutions with asymptotic behavior of Hessian equations,, Adv. Math. (China), (). Google Scholar

[6]

Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations,, Comm. Pure Appl. Math., 35 (1982), 333. doi: 10.1002/cpa.3160350303. Google Scholar

[7]

D. Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2$^{nd}$ edition, (1983). Google Scholar

[8]

H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs,, Comm. Pure Appl. Math., 42 (1989), 15. doi: 10.1002/cpa.3160420103. Google Scholar

[9]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain. (Russian),, Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75. Google Scholar

[10]

O. Savin, Entire solutions to a class of fully nonlinear elliptic equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 369. Google Scholar

[11]

B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE,, Arch. Ration. Mech. Anal., 195 (2010), 579. doi: 10.1007/s00205-009-0218-9. Google Scholar

[1]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[2]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[3]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

[4]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[5]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[6]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[7]

Luca Rossi. Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125-141. doi: 10.3934/cpaa.2008.7.125

[8]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[9]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[10]

Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-25. doi: 10.3934/dcdss.2020077

[11]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[12]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure & Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[13]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[14]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[15]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[16]

Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247

[17]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[18]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[19]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[20]

Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]