November  2011, 10(6): 1663-1686. doi: 10.3934/cpaa.2011.10.1663

Unbounded solutions of the nonlocal heat equation

1. 

Departamento de Matemáticas, U. Carlos III de Madrid, 28911 Leganés, Spain

2. 

Laboratoire de Mathématiques et Physique Théorique, U. F. Rabelais, Parc de Grandmont, 37200 Tours, France

3. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid

Received  February 2010 Revised  January 2011 Published  May 2011

We consider the Cauchy problem posed in the whole space for the following nonlocal heat equation: $ u_t = J\ast u -u, $ where $J$ is a symmetric continuous probability density. Depending on the tail of $J$, we give a rather complete picture of the problem in optimal classes of data by: $(i)$ estimating the initial trace of (possibly unbounded) solutions; $(ii)$ showing existence and uniqueness results in a suitable class; $(iii)$ proving blow-up in finite time in the case of some critical growths; $(iv)$ giving explicit unbounded polynomial solutions.
Citation: C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663
References:
[1]

N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data,, Trans. Amer. Math. Soc., 361 (2009), 2527. doi: 10.1090/S0002-9947-08-04758-2. Google Scholar

[2]

C. Brändle and E. Chasseigne, Large deviations estimates for some non-local equations. Fast decaying kernels and explicit bounds,, Nonlinear Analysis, 71 (2009), 5572. doi: 10.1016/j.na.2009.04.059. Google Scholar

[3]

C. Brändle and E. Chasseigne, Large Deviations estimates for some non-local equations. General bounds and applications,, to appear in Trans. Amer. Math. Soc, (). Google Scholar

[4]

P. Carr, H. Geman, D. B. Madan and M. Yor, Stochastic volatility for Lévy processes,, Math. Finance, 13 (2003), 345. doi: 10.1111/1467-9965.00020. Google Scholar

[5]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[6]

E. Chasseigne and R. Ferreira, Isothermalization for a Non-local Heat Equation,, preprint, (). Google Scholar

[7]

F. John, "Partial Differential Equations,", 4$^{nd}$ edition, (1982). Google Scholar

show all references

References:
[1]

N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data,, Trans. Amer. Math. Soc., 361 (2009), 2527. doi: 10.1090/S0002-9947-08-04758-2. Google Scholar

[2]

C. Brändle and E. Chasseigne, Large deviations estimates for some non-local equations. Fast decaying kernels and explicit bounds,, Nonlinear Analysis, 71 (2009), 5572. doi: 10.1016/j.na.2009.04.059. Google Scholar

[3]

C. Brändle and E. Chasseigne, Large Deviations estimates for some non-local equations. General bounds and applications,, to appear in Trans. Amer. Math. Soc, (). Google Scholar

[4]

P. Carr, H. Geman, D. B. Madan and M. Yor, Stochastic volatility for Lévy processes,, Math. Finance, 13 (2003), 345. doi: 10.1111/1467-9965.00020. Google Scholar

[5]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[6]

E. Chasseigne and R. Ferreira, Isothermalization for a Non-local Heat Equation,, preprint, (). Google Scholar

[7]

F. John, "Partial Differential Equations,", 4$^{nd}$ edition, (1982). Google Scholar

[1]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[2]

Shixiu Zheng, Zhilei Xu, Huan Yang, Jintao Song, Zhenkuan Pan. Comparisons of different methods for balanced data classification under the discrete non-local total variational framework. Mathematical Foundations of Computing, 2019, 2 (1) : 11-28. doi: 10.3934/mfc.2019002

[3]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[4]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[5]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[6]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[7]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[8]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[9]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[10]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[11]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[12]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

[13]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[14]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[15]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[16]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[17]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[18]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[19]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[20]

Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]