November  2011, 10(6): 1645-1662. doi: 10.3934/cpaa.2011.10.1645

Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains

1. 

Instituto de Matemáticas, Universidad Nacional Autónoma de Mexico, Circuito Exterior, C.U., 04510 México D.F., Mexico

Received  May 2010 Revised  April 2011 Published  May 2011

We consider the nonlinear and nonlocal problem

$A_{1/2}u=|u|^{2^{\sharp}-2}u$ in $\Omega, \quad u=0$ on $\partial\Omega$

where $A_{1/2}$ represents the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions, $\Omega$ is a bounded smooth domain in $R^n$, $n\ge 2$ and $2^{\sharp}=2n/(n-1)$ is the critical trace-Sobolev exponent. We assume that $\Omega$ is annular-shaped, i.e., there exist $R_2>R_1>0$ constants such that $\{ x \in R^n$ s.t. $R_1 < |x| < R_2 \}\subset\Omega$ and $0\notin\Omega$, and invariant under a group $\Gamma$ of orthogonal transformations of $R^n$ without fixed points. We establish the existence of positive and multiple sign changing solutions in the two following cases: if $R_1/R_2$ is arbitrary and the minimal $\Gamma$-orbit of $\Omega$ is large enough, or if $R_1/R_2$ is small enough and $\Gamma$ is arbitrary.

Citation: Antonio Capella. Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1645-1662. doi: 10.3934/cpaa.2011.10.1645
References:
[1]

A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253. doi: 10.1002/cpa.3160410302. Google Scholar

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[3]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[4]

M. Clapp and F. Pacella, Multiple solutions to the pure exponent problem in domains with a hole of arbitrary size,, Math. Z., 259 (2008), 575. doi: 10.1007/s00209-007-0238-9. Google Scholar

[5]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain,, Calc. Var., 21 (2004), 1. doi: 10.1007/s00526-003-0241-x. Google Scholar

[6]

M. Clapp and T. Weth, Two solutions of the Bahri-Coron problem in punctured domains via the fixed point transfer,, Commun. Contemp. Math., 10 (2008), 81. doi: 10.1142/S0219199708002715. Google Scholar

[7]

J. M. Coron, Topologie et cas limite des injections de Sobolev,, C.R. Acad. Sci. Paris Ser. I, 299 (1984), 209. Google Scholar

[8]

K. Deimling, "Ordinary Differential Equations in Banach Spaces,", Lect. Notes Math. 596, (1977). Google Scholar

[9]

J. Escobar, Sharp constant in a Sobolev trace inequality,, Indiana Univ. Math. J., 37 (1988), 687. doi: 10.1512/iumj.1988.37.37033. Google Scholar

[10]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II,, Rev. Mat. Iberoamericana, 1.2 (1985), 45. Google Scholar

[11]

M. V. Marchi and F. Pacella, On the existence of nodal solutions of the equation $-\Delta u = |u|^{2^{\ast}-2} u$ with Dirichlet boundary conditions,, Diff. Int. Eq., 6 (1993), 849. Google Scholar

[12]

R. E. Megginson, "An Introduction to Banach Space Theory,", Graduate Texts in Mathematics, (1998). Google Scholar

[13]

D. Pohozaev, Eigenfunctions of the equation $\Delta u+ f(u)=0$, (Russian), Soviet Math. Dokl. 6 (1965), 6 (1965), 1408. Google Scholar

[14]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", 1st edition, (1990). Google Scholar

[15]

J. Tan, "Nonlinear Analysis for an elastic Lattice and a Fractional Laplacian,", Ph.D thesis, (2008). Google Scholar

[16]

M. Willem, "Minimax Theorems,", PNLDE 24, (1996). Google Scholar

show all references

References:
[1]

A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253. doi: 10.1002/cpa.3160410302. Google Scholar

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[3]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[4]

M. Clapp and F. Pacella, Multiple solutions to the pure exponent problem in domains with a hole of arbitrary size,, Math. Z., 259 (2008), 575. doi: 10.1007/s00209-007-0238-9. Google Scholar

[5]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain,, Calc. Var., 21 (2004), 1. doi: 10.1007/s00526-003-0241-x. Google Scholar

[6]

M. Clapp and T. Weth, Two solutions of the Bahri-Coron problem in punctured domains via the fixed point transfer,, Commun. Contemp. Math., 10 (2008), 81. doi: 10.1142/S0219199708002715. Google Scholar

[7]

J. M. Coron, Topologie et cas limite des injections de Sobolev,, C.R. Acad. Sci. Paris Ser. I, 299 (1984), 209. Google Scholar

[8]

K. Deimling, "Ordinary Differential Equations in Banach Spaces,", Lect. Notes Math. 596, (1977). Google Scholar

[9]

J. Escobar, Sharp constant in a Sobolev trace inequality,, Indiana Univ. Math. J., 37 (1988), 687. doi: 10.1512/iumj.1988.37.37033. Google Scholar

[10]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II,, Rev. Mat. Iberoamericana, 1.2 (1985), 45. Google Scholar

[11]

M. V. Marchi and F. Pacella, On the existence of nodal solutions of the equation $-\Delta u = |u|^{2^{\ast}-2} u$ with Dirichlet boundary conditions,, Diff. Int. Eq., 6 (1993), 849. Google Scholar

[12]

R. E. Megginson, "An Introduction to Banach Space Theory,", Graduate Texts in Mathematics, (1998). Google Scholar

[13]

D. Pohozaev, Eigenfunctions of the equation $\Delta u+ f(u)=0$, (Russian), Soviet Math. Dokl. 6 (1965), 6 (1965), 1408. Google Scholar

[14]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", 1st edition, (1990). Google Scholar

[15]

J. Tan, "Nonlinear Analysis for an elastic Lattice and a Fractional Laplacian,", Ph.D thesis, (2008). Google Scholar

[16]

M. Willem, "Minimax Theorems,", PNLDE 24, (1996). Google Scholar

[1]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[2]

Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256

[3]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[4]

Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268

[5]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[6]

Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125

[7]

Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143

[8]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[9]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[10]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[11]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[12]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[13]

Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301

[14]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[15]

Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095

[16]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[17]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[18]

Tadeusz Kulczycki, Robert Stańczy. Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2581-2591. doi: 10.3934/dcdsb.2014.19.2581

[19]

J. Tyagi. Multiple solutions for singular N-Laplace equations with a sign changing nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2381-2391. doi: 10.3934/cpaa.2013.12.2381

[20]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]