November  2011, 10(6): 1617-1627. doi: 10.3934/cpaa.2011.10.1617

A generalization of $H$-measures and application on purely fractional scalar conservation laws

1. 

Faculty of Mathematics, University of Montenegro, Cetinjski put bb, 81000 Podgorica

2. 

Faculty of Mathematics, University of Zagreb, Bijenicka cesta 30, 10000 Zagreb, Croatia

Received  January 2010 Revised  March 2011 Published  May 2011

We extend the notion of $H$-measures on test functions defined on $R^d\times P$, where $P\subset R^d$ is an arbitrary compact simply connected Lipschitz manifold such that there exists a family of regular nonintersecting curves issuing from the manifold and fibrating $R^d$. We introduce a concept of quasi-solutions to purely fractional scalar conservation laws and apply our extension of the $H$-measures to prove strong $L_{l o c}^1$ precompactness of such quasi-solutions.
Citation: Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617
References:
[1]

J. Aleksić, D. Mitrovíc and S. Pilipović, Hyperbolic conservation laws with vanishing nonlinear diffusion and linear dispersion in heterogeneous media,, Journal of Evolution Equations, 9 (2009), 809. doi: doi:10.1007/s00028-009-0035-5. Google Scholar

[2]

N. Alibaud, Entropy formulation for fractal conservation laws,, Journal of Evolution Equations, 7 (2007), 145. doi: doi:10.1007/s00028-006-0253-z. Google Scholar

[3]

N. Antonic and M. Lazar, Parabolic variant of H-measures in homogenisation of a model problem based on Navier-Stokes equation,, Nonlinear Analysis-Real World Appl, 11 (2010), 4500. doi: doi:10.1016/j.nonrwa.2008.07.010. Google Scholar

[4]

N. Antonic and M. Lazar, $H$-measures and variants applied to parabolic equations,, J. Math. Anal. Appl., 343 (2008), 207. doi: doi:10.1016/j.jmaa.2007.12.077. Google Scholar

[5]

R. DiPerna, Compensated compactness and general systems of conservation laws,, Trans. Amer. Math. Soc., 292 (1985), 383. doi: doi:10.1090/S0002-9947-1985-0808729-4. Google Scholar

[6]

J. Droniou and C. Imbert, Fractal first-order partial differential equations,, Arch. Ration. Mech. Anal., 182 (2006), 299. doi: doi:10.1007/s00205-006-0429-2. Google Scholar

[7]

P. Gerard, Microlocal Defect Measures,, Comm. Partial Differential Equations, 16 (1991), 1761. doi: doi:10.1080/03605309108820822. Google Scholar

[8]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sbornik., 81 (1970), 228. Google Scholar

[9]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations,, J. of American Math. Soc., 7 (1994), 169. doi: doi:10.1090/S0894-0347-1994-1201239-3. Google Scholar

[10]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case,, Part I. Ann. Inst. H. Poincare Sect. A (N.S.), 1 (1984), 109. Google Scholar

[11]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case,, Part II. Ann. Inst. H.Poincare Sect. A (N.S.), 1 (1984), 109. Google Scholar

[12]

D. Mitrovic, Existence and stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163. doi: doi:10.3934/nhm.2010.5.163. Google Scholar

[13]

E. Yu. Panov, On sequences of measure-valued solutions of a first order quasilinear equations,, Russian Acad. Sci. Sb. Math., 81 (1995), 211. doi: doi:10.1070/SM1995v081n01ABEH003621. Google Scholar

[14]

E. Yu. Panov, Ultra-parabolic equations with rough coefficients. Entropy solutions and strong pre-compactness property,, Journal of Mathematical Sciences, 159 (2009), 180. doi: doi:10.1007/s10958-009-9434-y. Google Scholar

[15]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws,, Journal of Hyperbolic Differential Equations, 4 (2007), 729. doi: doi:10.1142/S0219891607001343. Google Scholar

[16]

E. Yu. Panov, Existence and strong precompactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Ration. Mech. Anal., 195 (2010), 643. doi: doi:10.1007/s00205-009-0217-x. Google Scholar

[17]

S. A. Sazhenkov, The genuinely nonlinear Graetz-Nusselt ultraparabolic equation,, (Russian. Russian summary) Sibirsk. Mat. Zh., 47 (2006), 431. doi: doi:10.1007/s11202-006-0048-z. Google Scholar

[18]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 115 (1990), 193. Google Scholar

[19]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction,", Lecture Notes of the Unione Matematica Italiana, (2009). Google Scholar

show all references

References:
[1]

J. Aleksić, D. Mitrovíc and S. Pilipović, Hyperbolic conservation laws with vanishing nonlinear diffusion and linear dispersion in heterogeneous media,, Journal of Evolution Equations, 9 (2009), 809. doi: doi:10.1007/s00028-009-0035-5. Google Scholar

[2]

N. Alibaud, Entropy formulation for fractal conservation laws,, Journal of Evolution Equations, 7 (2007), 145. doi: doi:10.1007/s00028-006-0253-z. Google Scholar

[3]

N. Antonic and M. Lazar, Parabolic variant of H-measures in homogenisation of a model problem based on Navier-Stokes equation,, Nonlinear Analysis-Real World Appl, 11 (2010), 4500. doi: doi:10.1016/j.nonrwa.2008.07.010. Google Scholar

[4]

N. Antonic and M. Lazar, $H$-measures and variants applied to parabolic equations,, J. Math. Anal. Appl., 343 (2008), 207. doi: doi:10.1016/j.jmaa.2007.12.077. Google Scholar

[5]

R. DiPerna, Compensated compactness and general systems of conservation laws,, Trans. Amer. Math. Soc., 292 (1985), 383. doi: doi:10.1090/S0002-9947-1985-0808729-4. Google Scholar

[6]

J. Droniou and C. Imbert, Fractal first-order partial differential equations,, Arch. Ration. Mech. Anal., 182 (2006), 299. doi: doi:10.1007/s00205-006-0429-2. Google Scholar

[7]

P. Gerard, Microlocal Defect Measures,, Comm. Partial Differential Equations, 16 (1991), 1761. doi: doi:10.1080/03605309108820822. Google Scholar

[8]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sbornik., 81 (1970), 228. Google Scholar

[9]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations,, J. of American Math. Soc., 7 (1994), 169. doi: doi:10.1090/S0894-0347-1994-1201239-3. Google Scholar

[10]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case,, Part I. Ann. Inst. H. Poincare Sect. A (N.S.), 1 (1984), 109. Google Scholar

[11]

P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case,, Part II. Ann. Inst. H.Poincare Sect. A (N.S.), 1 (1984), 109. Google Scholar

[12]

D. Mitrovic, Existence and stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163. doi: doi:10.3934/nhm.2010.5.163. Google Scholar

[13]

E. Yu. Panov, On sequences of measure-valued solutions of a first order quasilinear equations,, Russian Acad. Sci. Sb. Math., 81 (1995), 211. doi: doi:10.1070/SM1995v081n01ABEH003621. Google Scholar

[14]

E. Yu. Panov, Ultra-parabolic equations with rough coefficients. Entropy solutions and strong pre-compactness property,, Journal of Mathematical Sciences, 159 (2009), 180. doi: doi:10.1007/s10958-009-9434-y. Google Scholar

[15]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws,, Journal of Hyperbolic Differential Equations, 4 (2007), 729. doi: doi:10.1142/S0219891607001343. Google Scholar

[16]

E. Yu. Panov, Existence and strong precompactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Ration. Mech. Anal., 195 (2010), 643. doi: doi:10.1007/s00205-009-0217-x. Google Scholar

[17]

S. A. Sazhenkov, The genuinely nonlinear Graetz-Nusselt ultraparabolic equation,, (Russian. Russian summary) Sibirsk. Mat. Zh., 47 (2006), 431. doi: doi:10.1007/s11202-006-0048-z. Google Scholar

[18]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 115 (1990), 193. Google Scholar

[19]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction,", Lecture Notes of the Unione Matematica Italiana, (2009). Google Scholar

[1]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

[2]

Matthieu Brassart. Non-critical fractional conservation laws in domains with boundary. Networks & Heterogeneous Media, 2016, 11 (2) : 251-262. doi: 10.3934/nhm.2016.11.251

[3]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[4]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[5]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[6]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[7]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[8]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[9]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[10]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[11]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[12]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[13]

Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i

[14]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[15]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[16]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[17]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[18]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[19]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[20]

Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks & Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]