# American Institute of Mathematical Sciences

January  2011, 10(1): 161-177. doi: 10.3934/cpaa.2011.10.161

## Blowing up at zero points of potential for an initial boundary value problem

 1 Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137, Taiwan 2 National Center for Theoretical Sciences, Taipei Office, 1, S-4, Roosevelt Road, Taipei 10617, Taiwan

Received  January 2010 Revised  May 2010 Published  November 2010

We study nonnegative radially symmetric solutions for a semilinear heat equation in a ball with spatially dependent coefficient which vanishes at the origin. Our aim is to construct a solution that blows up at the origin where there is no reaction. For this, we first prove that the blow-up is complete, if the origin is not a blow-up point and if there is no blow-up point on the boundary. Then we prove that a threshold solution exists such that it blows up in finite time incompletely and there is no blow-up point on the boundary. On the other hand, we prove that any zero of nonnegative potential is not a blow-up point for a more general problem under the assumption that the solution is monotone in time.
Citation: Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161
 [1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems,, Israel J. Math., 45 (1983), 225. doi: doi:10.1007/BF02774019. Google Scholar [2] P. Baras and L. Cohen, Complete blow-up after $T_{m a x}$ for the solution of a semilinear heat equation,, J. Funct. Anal., 71 (1987), 142. doi: doi:10.1016/0022-1236(87)90020-6. Google Scholar [3] X.Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, J. Differential Equations, 78 (1989), 160. doi: doi:10.1016/0022-0396(89)90081-8. Google Scholar [4] X. Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball,, J. Reine Angew. Math., 472 (1996), 17. doi: doi:10.1515/crll.1996.472.17. Google Scholar [5] L. Du and Z. Yao, Localization of blow-up points for a nonlinear nonlocal porous medium equation,, Commun. Pure Appl. Anal., 6 (2007), 183. Google Scholar [6] S. Filippas and A. Tertikas, On similarity solutions of a heat equation with a nonhomogeneous nonlinearity,, J. Differential Equations, 165 (2000), 468. doi: doi:10.1006/jdeq.2000.3789. Google Scholar [7] A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425. doi: doi:10.1512/iumj.1985.34.34025. Google Scholar [8] H. Fujita, On the nonlinear equations $\Delta u+exp u=0$ and $u_t=\Delta u+exp u$,, Bull. Amer. Math. Soc., 75 (1969), 132. doi: doi:10.1090/S0002-9904-1969-12175-0. Google Scholar [9] V. A. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions,, Comm. Pure Applied Math., 50 (1997), 1. doi: doi:10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H. Google Scholar [10] N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: dynamic case,, Nonlinear Diff. Eqns. Appl., 15 (2008), 115. doi: doi:10.1007/s00030-007-6004-1. Google Scholar [11] Y. Giga and R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297. doi: doi:10.1002/cpa.3160380304. Google Scholar [12] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1. doi: doi:10.1512/iumj.1987.36.36001. Google Scholar [13] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations,, Comm. Pure Appl. Math., 42 (1989), 845. doi: doi:10.1002/cpa.3160420607. Google Scholar [14] J. S. Guo, C. S. Lin and M. Shimojo, Blow-up behavior for a parabolic equation with spatially dependent coefficient,, Dynamic Systems Appl. (to appear)., (). Google Scholar [15] T. Hamada, On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data,, Tsukuba J. Math., 21 (1997), 505. Google Scholar [16] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl. Math., 16 (1963), 305. doi: doi:10.1002/cpa.3160160307. Google Scholar [17] A. A. Lacey and D. Tzanetis, Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition,, IMA. J. Appl. Math., 41 (1988), 207. doi: doi:10.1093/imamat/41.3.207. Google Scholar [18] L. A. Lepin, Countable spectrum of the eigenfunctions of the nonlinear heat equation with distributed parameters, (Russian), Differentsial'nye Uravneniya, 24 (1988), 1226. Google Scholar [19] L. A. Lepin, Self-similar solutions of a semilinear heat equation, (Russian), Mat. Model., 2 (1990), 63. Google Scholar [20] H. Matano and F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation,, Comm. Pure Appl. Math., 57 (2004), 1494. doi: doi:10.1002/cpa.20044. Google Scholar [21] H. Matano and F. Merle, Classification of type I and type II blowup for a supercritical nonlinear heat equation,, J. Funct. Anal., 256 (2009), 992. doi: doi:10.1016/j.jfa.2008.05.021. Google Scholar [22] J. Matos, Unfocused blow up solutions of semilinear parabolic equations,, Discrete Contin. Dynam. Systems, 5 (1999), 905. doi: doi:10.3934/dcds.1999.5.905. Google Scholar [23] J. Matos, Self-similar blow up patterns in supercritical semilinear heat equations,, Comm. Appl. Anal., 5 (2001), 455. Google Scholar [24] F. Merle, H. Zaag, Stability of the blow-up profile for equations of the type $u_t=\Delta u+ |u|^{p-1}u,, Duke Math. J., 86 (1997), 143. doi: doi:10.1215/S0012-7094-97-08605-1. Google Scholar [25] N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its application,, Indiana Univ. Math. J., 54 (2005), 1047. doi: doi:10.1512/iumj.2005.54.2694. Google Scholar [26] N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation,, Indiana Univ. Math. J., 50 (2001), 591. Google Scholar [27] W. M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations,, J. Differential Equations, 54 (1984), 97. doi: doi:10.1016/0022-0396(84)90145-1. Google Scholar [28] W. M. Ni, Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations,, Nonlinear Functional Analysis and its Applications, 45 (1983), 229. Google Scholar [29] R. G. Pinsky, Existence and nonexistence of global solutions for$u_ t=\Delta u+a(x)u^p$in$\R^d$,, J. Differential Equations, 133 (1997), 152. doi: doi:10.1006/jdeq.1996.3196. Google Scholar [30] P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,", Birkh\, (2007). Google Scholar [31] A. Ramiandrisoa, Blow-up profile for radial solutions of the nonlinear heat equation,, Asymp. Anal., 21 (1999), 221. Google Scholar [32] S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation,, J. Differential Equations, 246 (2009), 724. doi: doi:10.1016/j.jde.2008.09.004. Google Scholar [33] X. Wang, On the Cauchy problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549. doi: doi:10.2307/2154232. Google Scholar show all references ##### References:  [1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems,, Israel J. Math., 45 (1983), 225. doi: doi:10.1007/BF02774019. Google Scholar [2] P. Baras and L. Cohen, Complete blow-up after$T_{m a x}$for the solution of a semilinear heat equation,, J. Funct. Anal., 71 (1987), 142. doi: doi:10.1016/0022-1236(87)90020-6. Google Scholar [3] X.Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, J. Differential Equations, 78 (1989), 160. doi: doi:10.1016/0022-0396(89)90081-8. Google Scholar [4] X. Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball,, J. Reine Angew. Math., 472 (1996), 17. doi: doi:10.1515/crll.1996.472.17. Google Scholar [5] L. Du and Z. Yao, Localization of blow-up points for a nonlinear nonlocal porous medium equation,, Commun. Pure Appl. Anal., 6 (2007), 183. Google Scholar [6] S. Filippas and A. Tertikas, On similarity solutions of a heat equation with a nonhomogeneous nonlinearity,, J. Differential Equations, 165 (2000), 468. doi: doi:10.1006/jdeq.2000.3789. Google Scholar [7] A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425. doi: doi:10.1512/iumj.1985.34.34025. Google Scholar [8] H. Fujita, On the nonlinear equations$\Delta u+exp u=0$and$u_t=\Delta u+exp u$,, Bull. Amer. Math. Soc., 75 (1969), 132. doi: doi:10.1090/S0002-9904-1969-12175-0. Google Scholar [9] V. A. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions,, Comm. Pure Applied Math., 50 (1997), 1. doi: doi:10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H. Google Scholar [10] N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: dynamic case,, Nonlinear Diff. Eqns. Appl., 15 (2008), 115. doi: doi:10.1007/s00030-007-6004-1. Google Scholar [11] Y. Giga and R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297. doi: doi:10.1002/cpa.3160380304. Google Scholar [12] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1. doi: doi:10.1512/iumj.1987.36.36001. Google Scholar [13] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations,, Comm. Pure Appl. Math., 42 (1989), 845. doi: doi:10.1002/cpa.3160420607. Google Scholar [14] J. S. Guo, C. S. Lin and M. Shimojo, Blow-up behavior for a parabolic equation with spatially dependent coefficient,, Dynamic Systems Appl. (to appear)., (). Google Scholar [15] T. Hamada, On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data,, Tsukuba J. Math., 21 (1997), 505. Google Scholar [16] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl. Math., 16 (1963), 305. doi: doi:10.1002/cpa.3160160307. Google Scholar [17] A. A. Lacey and D. Tzanetis, Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition,, IMA. J. Appl. Math., 41 (1988), 207. doi: doi:10.1093/imamat/41.3.207. Google Scholar [18] L. A. Lepin, Countable spectrum of the eigenfunctions of the nonlinear heat equation with distributed parameters, (Russian), Differentsial'nye Uravneniya, 24 (1988), 1226. Google Scholar [19] L. A. Lepin, Self-similar solutions of a semilinear heat equation, (Russian), Mat. Model., 2 (1990), 63. Google Scholar [20] H. Matano and F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation,, Comm. Pure Appl. Math., 57 (2004), 1494. doi: doi:10.1002/cpa.20044. Google Scholar [21] H. Matano and F. Merle, Classification of type I and type II blowup for a supercritical nonlinear heat equation,, J. Funct. Anal., 256 (2009), 992. doi: doi:10.1016/j.jfa.2008.05.021. Google Scholar [22] J. Matos, Unfocused blow up solutions of semilinear parabolic equations,, Discrete Contin. Dynam. Systems, 5 (1999), 905. doi: doi:10.3934/dcds.1999.5.905. Google Scholar [23] J. Matos, Self-similar blow up patterns in supercritical semilinear heat equations,, Comm. Appl. Anal., 5 (2001), 455. Google Scholar [24] F. Merle, H. Zaag, Stability of the blow-up profile for equations of the type$u_t=\Delta u+ |u|^{p-1}u,, Duke Math. J., 86 (1997), 143. doi: doi:10.1215/S0012-7094-97-08605-1. Google Scholar [25] N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its application,, Indiana Univ. Math. J., 54 (2005), 1047. doi: doi:10.1512/iumj.2005.54.2694. Google Scholar [26] N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation,, Indiana Univ. Math. J., 50 (2001), 591. Google Scholar [27] W. M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations,, J. Differential Equations, 54 (1984), 97. doi: doi:10.1016/0022-0396(84)90145-1. Google Scholar [28] W. M. Ni, Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations,, Nonlinear Functional Analysis and its Applications, 45 (1983), 229. Google Scholar [29] R. G. Pinsky, Existence and nonexistence of global solutions for $u_ t=\Delta u+a(x)u^p$ in $\R^d$,, J. Differential Equations, 133 (1997), 152. doi: doi:10.1006/jdeq.1996.3196. Google Scholar [30] P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,", Birkh\, (2007). Google Scholar [31] A. Ramiandrisoa, Blow-up profile for radial solutions of the nonlinear heat equation,, Asymp. Anal., 21 (1999), 221. Google Scholar [32] S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation,, J. Differential Equations, 246 (2009), 724. doi: doi:10.1016/j.jde.2008.09.004. Google Scholar [33] X. Wang, On the Cauchy problem for reaction-diffusion equations,, Trans. Amer. Math. Soc., 337 (1993), 549. doi: doi:10.2307/2154232. Google Scholar
 [1] Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 [2] Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025 [3] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [4] Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 [5] Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585 [6] Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 [7] Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 [8] Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 [9] Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891 [10] Baiyu Liu, Li Ma. Blow up threshold for a parabolic type equation involving space integral and variational structure. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2169-2183. doi: 10.3934/cpaa.2015.14.2169 [11] Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 [12] Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831 [13] Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072 [14] Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 [15] Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905 [16] Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 [17] Walter A. Strauss, Kimitoshi Tsutaya. Existence and blow up of small amplitude nonlinear waves with a negative potential. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 175-188. doi: 10.3934/dcds.1997.3.175 [18] Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315 [19] Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 [20] Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

2018 Impact Factor: 0.925