July  2011, 10(4): 1079-1096. doi: 10.3934/cpaa.2011.10.1079

Nonlinear hyperbolic-elliptic systems in the bounded domain

1. 

CMAF/Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal

Received  August 2010 Revised  October 2010 Published  April 2011

In the article we study a hyperbolic-elliptic system of PDE. The system can describe two different physical phenomena: 1st one is the motion of magnetic vortices in the II-type superconductor and 2nd one is the collective motion of cells. Motivated by real physics, we consider this system with boundary conditions, describing the flux of vortices (and cells, respectively) through the boundary of the domain. We prove the global solvability of this problem. To show the solvability result we use a "viscous" parabolic-elliptic system. Since the viscous solutions do not have a compactness property, we justify the limit transition on a vanishing viscosity, using a kinetic formulation of our problem. As the final result of all considerations we have solved a very important question related with a so-called "boundary layer problem", showing the strong convergence of the viscous solutions to the solution of our hyperbolic-elliptic system.
Citation: N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079
References:
[1]

S. N. Antontsev and N. V. Chemetov, Flux of superconducting vortices through a domain,, SIAM J. Math. Anal., 39 (2007), 263. doi: 10.1137/060655146. Google Scholar

[2]

S. N. Antontsev and N. V. Chemetov, Superconducting Vortices: Chapman Full Model,, in, (). doi: 10.1007/978-3-0346-0152-8_3. Google Scholar

[3]

S. J. Chapman, A hierarchy of models for type-II superconductors,, SIAM Review, 42 (2000), 555. doi: 10.1137/S0036144599371913. Google Scholar

[4]

S. J. Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions,, SIAM J. Appl. Math., 55 (1995), 1259. doi: 10.1137/S0036139994263665. Google Scholar

[5]

G.-Q. Chen and H. Frid, On the theory of divergence-measure fields and its applications,, Bol. Soc. Bras. Mat., 32 (2001), 401. doi: 10.1007/BF01233674. Google Scholar

[6]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1999). Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar

[8]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences., I) Jahresber. Deutsch. Math.-Verein., 105 (2003), 103. Google Scholar

[9]

C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio,, Bourbaki Seminar, (2007), 1. Google Scholar

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1968). Google Scholar

[11]

O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Academic Press, (1968). Google Scholar

[12]

J. L. Lions and E. Magenes, "Problèmes aux limites non Homogénes et Applications,", Dunod, (1968). Google Scholar

[13]

J. Malek, J. Necas, M. Rokyta and M. Ruzicka, "Weak and Measure-valued Solutions to Evolutionary PDEs,", Chapman & Hall, (1996). Google Scholar

[14]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,, Trans. Amer. Math. Soc., 361 (2009), 2319. doi: 10.1090/S0002-9947-08-04656-4. Google Scholar

[15]

P. I. Plotnikov, "Ultraparabolic Muskat Equations,", Preprint No. 6, (2000). Google Scholar

[16]

P. Plotnikov and S. Sazhenkov, Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation,, J. Math. Anal. Appl., 304 (2005), 703. doi: 10.1016/j.jmaa.2004.09.050. Google Scholar

show all references

References:
[1]

S. N. Antontsev and N. V. Chemetov, Flux of superconducting vortices through a domain,, SIAM J. Math. Anal., 39 (2007), 263. doi: 10.1137/060655146. Google Scholar

[2]

S. N. Antontsev and N. V. Chemetov, Superconducting Vortices: Chapman Full Model,, in, (). doi: 10.1007/978-3-0346-0152-8_3. Google Scholar

[3]

S. J. Chapman, A hierarchy of models for type-II superconductors,, SIAM Review, 42 (2000), 555. doi: 10.1137/S0036144599371913. Google Scholar

[4]

S. J. Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions,, SIAM J. Appl. Math., 55 (1995), 1259. doi: 10.1137/S0036139994263665. Google Scholar

[5]

G.-Q. Chen and H. Frid, On the theory of divergence-measure fields and its applications,, Bol. Soc. Bras. Mat., 32 (2001), 401. doi: 10.1007/BF01233674. Google Scholar

[6]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1999). Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar

[8]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences., I) Jahresber. Deutsch. Math.-Verein., 105 (2003), 103. Google Scholar

[9]

C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio,, Bourbaki Seminar, (2007), 1. Google Scholar

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1968). Google Scholar

[11]

O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Academic Press, (1968). Google Scholar

[12]

J. L. Lions and E. Magenes, "Problèmes aux limites non Homogénes et Applications,", Dunod, (1968). Google Scholar

[13]

J. Malek, J. Necas, M. Rokyta and M. Ruzicka, "Weak and Measure-valued Solutions to Evolutionary PDEs,", Chapman & Hall, (1996). Google Scholar

[14]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,, Trans. Amer. Math. Soc., 361 (2009), 2319. doi: 10.1090/S0002-9947-08-04656-4. Google Scholar

[15]

P. I. Plotnikov, "Ultraparabolic Muskat Equations,", Preprint No. 6, (2000). Google Scholar

[16]

P. Plotnikov and S. Sazhenkov, Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation,, J. Math. Anal. Appl., 304 (2005), 703. doi: 10.1016/j.jmaa.2004.09.050. Google Scholar

[1]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[2]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[3]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[4]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[5]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[6]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[7]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[8]

Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic & Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042

[9]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[10]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[11]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[12]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[13]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[14]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[15]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[16]

Franco Flandoli, Enrico Priola, Giovanni Zanco. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3037-3067. doi: 10.3934/dcds.2019126

[17]

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049

[18]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[19]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[20]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]