July  2011, 10(4): 1037-1054. doi: 10.3934/cpaa.2011.10.1037

Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents

1. 

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, PO Box 71010, Wuhan 430071E01103, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084e/pjp, China

3. 

Department of Mathematics, South China University of Technology, Guangzhou 510640, China

Received  April 2010 Revised  September 2010 Published  April 2011

By using a change of variable, the quasilinear Schrödinger equation is reduced to semilinear elliptic equation. Then, Mountain Pass theorem without $(PS)_c$ condition in a suitable Orlicz space is employed to prove the existence of positive standing wave solutions for a class of quasilinear Schrödinger equations involving critical Sobolev-Hardy exponents.
Citation: Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037
References:
[1]

C. O. Alves, J. M. do Ó and O. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbbR^2$ involving critical growth,, Nonlinear Anal., 56 (2004), 781. doi: 10.1016/j.na.2003.06.003.

[2]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach,, Nonlinear Anal., 56 (2004), 213. doi: 10.1016/j.na.2003.09.008.

[3]

J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations:the critical exponential case,, Nonlinear Anal., 67 (2007), 3357. doi: 10.1016/j.na.2006.10.018.

[4]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities,, Comm. Pure and Applied Anal., 8 (2009), 621. doi: 10.3934/cpaa.2009.8.621.

[5]

A. Floer and A. Weisntein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0.

[6]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703. doi: 10.1090/S0002-9947-00-02560-5.

[7]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, Z. Phys. B, 37 (1980), 83. doi: 10.1007/BF01325508.

[8]

D. Sh. Kang, Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents in $\mathbbR^N$,, Nonlinear Anal., 66 (2007). doi: 10.1016/j.na.2005.11.028.

[9]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, Phys. Rep., 194 (1990), 117. doi: 10.1016/0370-1573(90)90130-T.

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262. doi: 10.1143/jpsj.50.3262.

[11]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, J. Math. Phys., 24 (1983), 2764. doi: 10.1063/1.525675.

[12]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, JETP Lett., 27 (1978), 517. doi: 0021-3640778/2710-0517.

[13]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879. doi: 10.1081/PDE-120037335.

[14]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I,, Proc. Amer. Math. Soc., 131 (2002), 441. doi: 10.1090/S0002-9939-02-06783-7.

[15]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Differential Equations, 187 (2003), 473. doi: 10.1016/s0022-0396(02)0064-5.

[16]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory,, Phys. Rep, 104 (1984), 1. doi: 10.1016/0370-1573(84)90106-6.

[17]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).

[18]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbbR^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773. doi: 10.1016/s0362-546x(96)00087-9.

[19]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbbR^N$,, J. Differential Equations, 229 (2006), 570. doi: 10.1016/j.jde.2006.07.001.

[20]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations,, Nonlinearity, 19 (2006), 937. doi: 10.1088/0951-7715/19/4/009.

[21]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. Partial Differential Equations \textbf{14} (2002), 14 (2002), 329. doi: 10.1007/s005260100105.

[22]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, Physica A, 110 (1982), 41. doi: 10.1016/0378-4371(82)90104-2.

[23]

S. Takeno and S. Homma, Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations,, Progr. Theoret. Phys., 65 (1981), 172. doi: 10.1143/PTP.65.172.

[24]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z angew Math. Phy., 43 (1992), 272. doi: 10.1007/BF00946631.

[25]

Y. J. Wang, J. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in $\mathbbR^N$,, Nonlinear Anal., 71 (2009), 6157. doi: 10.1016/j.na.2009.06.006.

[26]

Y. J. Wang, Y. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schröinger equations involving critical exponent,, Applied Mathematics and Computation, 216 (2010), 849. doi: 10.1016/j.amc.2010.01.091.

show all references

References:
[1]

C. O. Alves, J. M. do Ó and O. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbbR^2$ involving critical growth,, Nonlinear Anal., 56 (2004), 781. doi: 10.1016/j.na.2003.06.003.

[2]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach,, Nonlinear Anal., 56 (2004), 213. doi: 10.1016/j.na.2003.09.008.

[3]

J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations:the critical exponential case,, Nonlinear Anal., 67 (2007), 3357. doi: 10.1016/j.na.2006.10.018.

[4]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities,, Comm. Pure and Applied Anal., 8 (2009), 621. doi: 10.3934/cpaa.2009.8.621.

[5]

A. Floer and A. Weisntein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0.

[6]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703. doi: 10.1090/S0002-9947-00-02560-5.

[7]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, Z. Phys. B, 37 (1980), 83. doi: 10.1007/BF01325508.

[8]

D. Sh. Kang, Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents in $\mathbbR^N$,, Nonlinear Anal., 66 (2007). doi: 10.1016/j.na.2005.11.028.

[9]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, Phys. Rep., 194 (1990), 117. doi: 10.1016/0370-1573(90)90130-T.

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262. doi: 10.1143/jpsj.50.3262.

[11]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, J. Math. Phys., 24 (1983), 2764. doi: 10.1063/1.525675.

[12]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, JETP Lett., 27 (1978), 517. doi: 0021-3640778/2710-0517.

[13]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879. doi: 10.1081/PDE-120037335.

[14]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I,, Proc. Amer. Math. Soc., 131 (2002), 441. doi: 10.1090/S0002-9939-02-06783-7.

[15]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Differential Equations, 187 (2003), 473. doi: 10.1016/s0022-0396(02)0064-5.

[16]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory,, Phys. Rep, 104 (1984), 1. doi: 10.1016/0370-1573(84)90106-6.

[17]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).

[18]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbbR^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773. doi: 10.1016/s0362-546x(96)00087-9.

[19]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbbR^N$,, J. Differential Equations, 229 (2006), 570. doi: 10.1016/j.jde.2006.07.001.

[20]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations,, Nonlinearity, 19 (2006), 937. doi: 10.1088/0951-7715/19/4/009.

[21]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. Partial Differential Equations \textbf{14} (2002), 14 (2002), 329. doi: 10.1007/s005260100105.

[22]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, Physica A, 110 (1982), 41. doi: 10.1016/0378-4371(82)90104-2.

[23]

S. Takeno and S. Homma, Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations,, Progr. Theoret. Phys., 65 (1981), 172. doi: 10.1143/PTP.65.172.

[24]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z angew Math. Phy., 43 (1992), 272. doi: 10.1007/BF00946631.

[25]

Y. J. Wang, J. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in $\mathbbR^N$,, Nonlinear Anal., 71 (2009), 6157. doi: 10.1016/j.na.2009.06.006.

[26]

Y. J. Wang, Y. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schröinger equations involving critical exponent,, Applied Mathematics and Computation, 216 (2010), 849. doi: 10.1016/j.amc.2010.01.091.

[1]

Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731

[2]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[3]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[4]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[5]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[6]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[7]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[8]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[9]

Jun Cao, Der-Chen Chang, Dachun Yang, Sibei Yang. Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1435-1463. doi: 10.3934/cpaa.2014.13.1435

[10]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[11]

Patrizia Pucci. Critical Schrödinger-Hardy systems in the Heisenberg group. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 375-400. doi: 10.3934/dcdss.2019025

[12]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[13]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[14]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[15]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[16]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[17]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[18]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[19]

Yaotian Shen, Youjun Wang. A class of generalized quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2016, 15 (3) : 853-870. doi: 10.3934/cpaa.2016.15.853

[20]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]