January  2010, 9(1): 61-75. doi: 10.3934/cpaa.2010.9.61

Infinite harmonic chain with heavy mass

1. 

University of Oxford, Mathematical Institute, 24-29 St Giles’, Oxford, OX1 3LB

2. 

Dipartimento di Matematica "F. Casorati", Universitá di Pavia, via Ferrata 1, P.O. Box 27100, Pavia

Received  January 2009 Revised  June 2009 Published  October 2009

Modelling a crystal with impurities we study an atomic chain of point masses with linear nearest neighbour interactions. We assume that the masses of the particles are normalised to 1, except for one heavy particle which has mass $M$. We investigate the macroscopic behaviour of such a system when $M$ is large, and time and space are scaled accordingly. As main result we derive a PDE for the light particles that is coupled with an ODE for the heavy particle.
Citation: Michael Herrmann, Antonio Segatti. Infinite harmonic chain with heavy mass. Communications on Pure & Applied Analysis, 2010, 9 (1) : 61-75. doi: 10.3934/cpaa.2010.9.61
[1]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[2]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[3]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[4]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[5]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 755-768. doi: 10.3934/dcdss.2020042

[6]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[7]

Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic & Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036

[8]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

[9]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[10]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[11]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[12]

Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547

[13]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[14]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[15]

Martina Chirilus-Bruckner, Christopher Chong, Oskar Prill, Guido Schneider. Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 879-901. doi: 10.3934/dcdss.2012.5.879

[16]

Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic & Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443

[17]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[18]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[19]

E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457

[20]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]