
Previous Article
Spherically symmetric NavierStokes equations with degenerate viscosity coefficients and vacuum
 CPAA Home
 This Issue

Next Article
Stability properties of periodic standing waves for the KleinGordonSchrödinger system
The twodimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$
1.  Department of Mathematics, Shanghai University, Shanghai, 200444, College of Mathematics and System Sciences, Urumqi, 830000, Xinjiang, China 
2.  Department of Mathematics, Shanghai University, Shanghai, 200444, China 
3.  Institute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing, 100190, China 
[1] 
Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2D isothermal Euler equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 33173336. doi: 10.3934/cpaa.2019149 
[2] 
Tung Chang, GuiQiang Chen, Shuli Yang. On the 2D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete & Continuous Dynamical Systems  A, 1995, 1 (4) : 555584. doi: 10.3934/dcds.1995.1.555 
[3] 
Tung Chang, GuiQiang Chen, Shuli Yang. On the 2D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete & Continuous Dynamical Systems  A, 2000, 6 (2) : 419430. doi: 10.3934/dcds.2000.6.419 
[4] 
Qin Wang, Kyungwoo Song. The regularity of sonic curves for the twodimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete & Continuous Dynamical Systems  A, 2016, 36 (3) : 16611675. doi: 10.3934/dcds.2016.36.1661 
[5] 
Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2018, 17 (1) : 127142. doi: 10.3934/cpaa.2018008 
[6] 
Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in twodimensions. Discrete & Continuous Dynamical Systems  A, 2011, 31 (2) : 489523. doi: 10.3934/dcds.2011.31.489 
[7] 
Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure & Applied Analysis, 2017, 16 (1) : 295310. doi: 10.3934/cpaa.2017014 
[8] 
Meixiang Huang, ZhiQiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure & Applied Analysis, 2016, 15 (1) : 127138. doi: 10.3934/cpaa.2016.15.127 
[9] 
Roberto Triggiani. Stability enhancement of a 2D linear NavierStokes channel flow by a 2D, wallnormal boundary controller. Discrete & Continuous Dynamical Systems  B, 2007, 8 (2) : 279314. doi: 10.3934/dcdsb.2007.8.279 
[10] 
Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 27332748. doi: 10.3934/cpaa.2014.13.2733 
[11] 
Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2016, 15 (6) : 23732400. doi: 10.3934/cpaa.2016041 
[12] 
Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2D quasilinear wave equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 719744. doi: 10.3934/cpaa.2017035 
[13] 
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of twodimensional piecewise linear maps: Abundance of 2D strange attractors. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 941966. doi: 10.3934/dcds.2018040 
[14] 
Chuandong Li, Fali Ma, Tingwen Huang. 2D analysis based iterative learning control for linear discretetime systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175181. doi: 10.3934/jimo.2011.7.175 
[15] 
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initialboundary value problem of a 2D KazhikhovSmagulov type model. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 917923. doi: 10.3934/dcdss.2014.7.917 
[16] 
Tian Ma, Shouhong Wang. Global structure of 2D incompressible flows. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 431445. doi: 10.3934/dcds.2001.7.431 
[17] 
Jeanfrançois Coulombel, Paolo Secchi. Uniqueness of 2D compressible vortex sheets. Communications on Pure & Applied Analysis, 2009, 8 (4) : 14391450. doi: 10.3934/cpaa.2009.8.1439 
[18] 
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2D turbulence. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13271351. doi: 10.3934/dcds.2010.27.1327 
[19] 
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2D Burgers equation. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 299313. doi: 10.3934/dcds.2009.23.299 
[20] 
Yuri N. Fedorov, Luis C. GarcíaNaranjo, Joris Vankerschaver. The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation. Discrete & Continuous Dynamical Systems  A, 2013, 33 (9) : 40174040. doi: 10.3934/dcds.2013.33.4017 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]