• Previous Article
    Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem
  • CPAA Home
  • This Issue
  • Next Article
    Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities
May  2009, 8(3): 1019-1029. doi: 10.3934/cpaa.2009.8.1019

A min-max principle for non-differentiable functions with a weak compactness condition

1. 

Dipartimento P.A.U., Università degli Studi Mediterranea di Reggio Calabria, Salita Melissari, 89100 Reggio Calabria, Italy

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy

Received  March 2008 Revised  January 2009 Published  February 2009

A general critical point result established by Ghoussoub is extended to the case of locally Lipschitz continuous functions satisfying a weak Palais-Smale hypothesis, which includes the so-called non-smooth Cerami condition. Some special cases are then pointed out.
Citation: Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019
[1]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[2]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[3]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[4]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[5]

P. Candito, S. A. Marano, D. Motreanu. Critical points for a class of nondifferentiable functions and applications. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 175-194. doi: 10.3934/dcds.2005.13.175

[6]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[7]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[8]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[9]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[10]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[11]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[12]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[13]

Ian D. Morris. Ergodic optimization for generic continuous functions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 383-388. doi: 10.3934/dcds.2010.27.383

[14]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[15]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[16]

Qian Liu, Xinmin Yang, Heung Wing Joseph Lee. On saddle points of a class of augmented lagrangian functions. Journal of Industrial & Management Optimization, 2007, 3 (4) : 693-700. doi: 10.3934/jimo.2007.3.693

[17]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[18]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[19]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[20]

Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]