• Previous Article
    On the decay in time of solutions of some generalized regularized long waves equations
  • CPAA Home
  • This Issue
  • Next Article
    Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$
May  2008, 7(3): 491-512. doi: 10.3934/cpaa.2008.7.491

Internal nonnegative stabilization for some parabolic equations

1. 

Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, case 26, U.F.R. Sciences et Modélisation, Université Victor Segalen Bordeaux 2,33076 Bordeaux Cedex, France

2. 

Faculty of Mathematics, University “Al.I. Cuza” and, Institute of Mathematics “Octav Mayer”, Iaşi 700506

Received  February 2007 Revised  August 2007 Published  February 2008

The internal zero-stabilization of the nonnegative solutions to some parabolic equations is investigated. We provide a necessary and a sufficient condition for nonnegative stabilizability in terms of the sign of the principal eigenvalue of a certain elliptic operator. This principal eigenvalue is related to the rate of the convergence of the solution. We give some evaluations of this principal eigenvalue with respect to the geometry of the domain and of the support of the control. A stabilization result for an age-dependent population dynamics with diffusion is also established.
Citation: B. E. Ainseba, Sebastian Aniţa. Internal nonnegative stabilization for some parabolic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 491-512. doi: 10.3934/cpaa.2008.7.491
[1]

Bedr'Eddine Ainseba. Age-dependent population dynamics diffusive systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1233-1247. doi: 10.3934/dcdsb.2004.4.1233

[2]

Gabriella Di Blasio. An ultraparabolic problem arising from age-dependent population diffusion. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 843-858. doi: 10.3934/dcds.2009.25.843

[3]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[4]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[5]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[6]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[7]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[8]

Tian Ma, Shouhong Wang. Unified field equations coupling four forces and principle of interaction dynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1103-1138. doi: 10.3934/dcds.2015.35.1103

[9]

Youssef Amal, Martin Campos Pinto. Global solutions for an age-dependent model of nucleation, growth and ageing with hysteresis. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 517-535. doi: 10.3934/dcdsb.2010.13.517

[10]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

[11]

Goro Akagi, Jun Kobayashi, Mitsuharu Ôtani. Principle of symmetric criticality and evolution equations. Conference Publications, 2003, 2003 (Special) : 1-10. doi: 10.3934/proc.2003.2003.1

[12]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[13]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[14]

Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure & Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133

[15]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[16]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[17]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[18]

Chiun-Chuan Chen, Li-Chang Hung, Chen-Chih Lai. An N-barrier maximum principle for autonomous systems of $n$ species and its application to problems arising from population dynamics. Communications on Pure & Applied Analysis, 2019, 18 (1) : 33-50. doi: 10.3934/cpaa.2019003

[19]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[20]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]