# American Institute of Mathematical Sciences

September  2007, 6(3): 689-718. doi: 10.3934/cpaa.2007.6.689

## Analysis of optimal bivariate symmetric refinable Hermite interpolants

 1 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1, Canada 2 Department of Mathematics, Zhejiang University, Hangzhou 310027, China

Received  May 2006 Revised  March 2007 Published  June 2007

Multivariate refinable Hermite interpolants with high smoothness and small support are of interest in CAGD and numerical algorithms. In this article, we are particularly interested in analyzing some univariate and bivariate symmetric refinable Hermite interpolants, which have some desirable properties such as short support, optimal smoothness and spline property. We shall study the projection method for multivariate refinable function vectors and discuss some properties of multivariate spline refinable function vectors. Here a compactly supported multivariate spline function on $\mathbb R^s$ just means a function of piecewise polynomials supporting on a finite number of polygonal partition subdomains of $\mathbb R^s$. We shall discuss spline refinable function vectors by investigating the structure of the eigenvalues and eigenvectors of the transition operator. To illustrate the results in this paper, we shall analyze the optimal smoothness and spline properties of some univariate and bivariate refinable Hermite interpolants. For the regular triangular mesh, we obtain a bivariate $C^2$ symmetric dyadic refinable Hermite interpolant of order $2$ whose mask is supported inside $[-1,1]^2$.
Citation: Bin Han, Qun Mo. Analysis of optimal bivariate symmetric refinable Hermite interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 689-718. doi: 10.3934/cpaa.2007.6.689
 [1] Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255 [2] Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Solving optimal control problem using Hermite wavelet. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 101-112. doi: 10.3934/naco.2019008 [3] Meng Zhao, Aijie Cheng, Hong Wang. A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3529-3545. doi: 10.3934/dcdsb.2017178 [4] R. Wong, L. Zhang. Global asymptotics of Hermite polynomials via Riemann-Hilbert approach. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 661-682. doi: 10.3934/dcdsb.2007.7.661 [5] Shu-Lin Lyu. On the Hermite--Hadamard inequality for convex functions of two variables. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 1-8. doi: 10.3934/naco.2014.4.1 [6] Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419 [7] S. S. Dragomir, I. Gomm. Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 271-278. doi: 10.3934/naco.2012.2.271 [8] Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117 [9] David Julitz. Numerical approximation of atmospheric-ocean models with subdivision algorithm. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 429-447. doi: 10.3934/dcds.2007.18.429 [10] Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems & Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039 [11] Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017 [12] Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023 [13] Gusein Sh. Guseinov. Spectral method for deriving multivariate Poisson summation formulae. Communications on Pure & Applied Analysis, 2013, 12 (1) : 359-373. doi: 10.3934/cpaa.2013.12.359 [14] Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401 [15] Said Agoujil, Abderrahman Bouhamidi, Sofiya Chergui, Youssef Qaraai. Implementation of the vehicular occupancy-emission relation using a cubic B-splines collocation method. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 389-406. doi: 10.3934/dcdss.2020022 [16] Antonios Zagaris, Christophe Vandekerckhove, C. William Gear, Tasso J. Kaper, Ioannis G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2759-2803. doi: 10.3934/dcds.2012.32.2759 [17] Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 [18] Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 [19] Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341 [20] Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

2018 Impact Factor: 0.925