September  2007, 6(3): 619-641. doi: 10.3934/cpaa.2007.6.619

Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis

1. 

Department of Mathematics, University of Aveiro, P-3810-193 Aveiro, Portugal, Portugal, Portugal, Portugal

Received  February 2006 Revised  September 2006 Published  June 2007

In this paper we construct a continuous wavelet transform (CWT) on the sphere $S^{n-1}$ based on the conformal group of the sphere, the Lorentz group Spin$(1,n)$. For this purpose, we present a short survey on the existing techniques of continuous wavelet transform and of conformal transformations on the unit sphere. We decompose the conformal group into the maximal compact subgroup of rotations Spin$(n)$ and the set of Möbius transformations of the form $\varphi_a(x) = (x-a)(1+ax)^{-1}$, where $a \in B^n$ and $B^n$ denotes the unit ball in $\mathbb R^n$. Based on a study of the influence of the parameter $a$ arising in the definition of dilations/contractions on the sphere we define a class of local conformal dilation operators and consequently a family of continuous wavelet transforms for the Hilbert space of square integrable functions on the sphere $L_2(S^{n-1})$ and the Hardy space $H^2$. In the end we construct Banach frames for our wavelets and prove Jackson-type theorems for the best $n$-point approximation.
Citation: P. Cerejeiras, M. Ferreira, U. Kähler, F. Sommen. Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis. Communications on Pure & Applied Analysis, 2007, 6 (3) : 619-641. doi: 10.3934/cpaa.2007.6.619
[1]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[2]

Petr Kůrka. Iterative systems of real Möbius transformations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567

[3]

Stephan Didas, Joachim Weickert. Integrodifferential equations for continuous multiscale wavelet shrinkage. Inverse Problems & Imaging, 2007, 1 (1) : 47-62. doi: 10.3934/ipi.2007.1.47

[4]

Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003

[5]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[6]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[7]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[8]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[9]

Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167

[10]

Andrey Yu. Verisokin, Darya V. Verveyko, Eugene B. Postnikov, Anastasia I. Lavrova. Wavelet analysis of phase clusters in a distributed biochemical system. Conference Publications, 2011, 2011 (Special) : 1404-1412. doi: 10.3934/proc.2011.2011.1404

[11]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[12]

Fred Brackx, Hennie De Schepper, Frank Sommen. A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Communications on Pure & Applied Analysis, 2007, 6 (3) : 549-567. doi: 10.3934/cpaa.2007.6.549

[13]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[14]

Jianzhong Wang. Wavelet approach to numerical differentiation of noisy functions. Communications on Pure & Applied Analysis, 2007, 6 (3) : 873-897. doi: 10.3934/cpaa.2007.6.873

[15]

Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Solving optimal control problem using Hermite wavelet. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 101-112. doi: 10.3934/naco.2019008

[16]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[17]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

[18]

Jianbin Yang, Cong Wang. A wavelet frame approach for removal of mixed Gaussian and impulse noise on surfaces. Inverse Problems & Imaging, 2017, 11 (5) : 783-798. doi: 10.3934/ipi.2017037

[19]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems & Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

[20]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]