March  2006, 5(1): 1-28. doi: 10.3934/cpaa.2006.5.1

Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities

1. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", Roma, I-00133

2. 

Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146, Italy

Received  April 2005 Revised  November 2005 Published  December 2005

We prove the existence of small amplitude periodic solutions, for a large Lebesgue measure set of frequencies, in the nonlinear beam equation with a weak quadratic and velocity dependent nonlinearity and with Dirichelet boundary conditions. Such nonlinear PDE can be regarded as a simple model describing oscillations of flexible structures like suspension bridges in presence of an uniform wind flow. The periodic solutions are explicitly constructed by a convergent perturbative expansion which can be considered the analogue of the Lindstedt series expansion for the invariant tori in classical mechanics. The periodic solutions are defined only in a Cantor set, and resummation techniques of divergent powers series are used in order to control the small divisors problem.
Citation: V. Mastropietro, Michela Procesi. Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities. Communications on Pure & Applied Analysis, 2006, 5 (1) : 1-28. doi: 10.3934/cpaa.2006.5.1
[1]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[2]

Koichiro Naito. Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 449-488. doi: 10.3934/dcds.2004.11.449

[3]

E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401

[4]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[5]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[6]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[7]

Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537

[8]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[9]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[10]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[11]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[12]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[13]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[14]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[15]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[16]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations & Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

[17]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[18]

Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949

[19]

Jason Metcalfe, Jacob Perry. Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 547-556. doi: 10.3934/cpaa.2012.11.547

[20]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]