June  2005, 4(2): 405-430. doi: 10.3934/cpaa.2005.4.405

On two classes of generalized viscous Cahn-Hilliard equations

1. 

Department of Mathematics "Felice Casorati", University of Pavia, V. Ferrata, 1 27100 Pavia, Italy

Received  March 2004 Revised  December 2004 Published  March 2005

This paper investigates two classes of generalized viscous Cahn-Hilliard equations , featuring two different laws for the mobility, which is assumed to depend on the chemical potential. Both equations can be obtained with the new derivation of equations of Cahn-Hilliard type proposed by M.E. GURTIN [14]. Approximation and compactness tools allow to prove well-posedness and, in one case, regularity results for the equations supplemented with initial and suitable boundary conditions.
Citation: Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405
[1]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[2]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[3]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[4]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[5]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[6]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[7]

Ciprian G. Gal, Hao Wu. Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1041-1063. doi: 10.3934/dcds.2008.22.1041

[8]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[9]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[10]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[11]

Ciprian G. Gal. Robust exponential attractors for a conserved Cahn-Hilliard model with singularly perturbed boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 819-836. doi: 10.3934/cpaa.2008.7.819

[12]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[13]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[14]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[15]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[16]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[17]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[18]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[19]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[20]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]