
Previous Article
Convergence of generalized proximal point algorithms
 CPAA Home
 This Issue

Next Article
Asymptotic behavior of a parabolichyperbolic system
Problems on electrorheological fluid flows
1.  Department of Mathematics, University of Houston, Houston, TX 772043008, United States 
2.  Institute of Mathematics, University of Augsburg, D86159 Augsburg, Germany 
[1] 
Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure & Applied Analysis, 2016, 15 (4) : 13351350. doi: 10.3934/cpaa.2016.15.1335 
[2] 
J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 177186. doi: 10.3934/dcdss.2008.1.177 
[3] 
W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure & Applied Analysis, 2007, 6 (1) : 247277. doi: 10.3934/cpaa.2007.6.247 
[4] 
W. G. Litvinov, R. H.W. Hoppe. Coupled problems on stationary nonisothermal flow of electrorheological fluids. Communications on Pure & Applied Analysis, 2005, 4 (4) : 779803. doi: 10.3934/cpaa.2005.4.779 
[5] 
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems  B, 2014, 19 (8) : 25692580. doi: 10.3934/dcdsb.2014.19.2569 
[6] 
M.J. LopezHerrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 10151024. doi: 10.3934/proc.2011.2011.1015 
[7] 
R. Kannan, S. Seikkala. Existence of solutions to some PhiLaplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211217. doi: 10.3934/proc.2001.2001.211 
[8] 
Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete & Continuous Dynamical Systems  S, 2015, 8 (2) : 243257. doi: 10.3934/dcdss.2015.8.243 
[9] 
Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete & Continuous Dynamical Systems  S, 2018, 11 (3) : 511532. doi: 10.3934/dcdss.2018028 
[10] 
John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multipoint boundary value problems. Conference Publications, 2013, 2013 (special) : 273281. doi: 10.3934/proc.2013.2013.273 
[11] 
Lingju Kong, Qingkai Kong. Existence of nodal solutions of multipoint boundary value problems. Conference Publications, 2009, 2009 (Special) : 457465. doi: 10.3934/proc.2009.2009.457 
[12] 
Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 415421. doi: 10.3934/dcdsb.2018179 
[13] 
Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems  A, 2008, 21 (2) : 513535. doi: 10.3934/dcds.2008.21.513 
[14] 
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$laplacian. Conference Publications, 2011, 2011 (Special) : 515522. doi: 10.3934/proc.2011.2011.515 
[15] 
XiaoYu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear twopoint boundary value problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 3143. doi: 10.3934/naco.2012.2.31 
[16] 
Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 21072128. doi: 10.3934/dcdsb.2015.20.2107 
[17] 
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 22132227. doi: 10.3934/cpaa.2013.12.2213 
[18] 
Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 5168. doi: 10.3934/jgm.2010.2.51 
[19] 
Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729756. doi: 10.3934/cpaa.2004.3.729 
[20] 
Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear secondorder integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596604. doi: 10.3934/proc.2015.0596 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]