July  2016, 1(2&3): 171-183. doi: 10.3934/bdia.2016003

Time series based urban air quality predication

1. 

National University of Defense Technology, 109, Deya Road, Changsha, Hunan, China, China, China, China, China

Received  May 2016 Revised  June 2016 Published  September 2016

Urban air pollution post a great threat to human health, and has been a major concern of many metropolises in developing countries. Lately, a few air quality monitoring stations have been established to inform public the real-time air quality indices based on fine particle matters, e.g. $PM_{2.5}$, in countries suffering from air pollutions. Air quality, unfortunately, is fairly difficult to manage due to multiple complex human activities from driving to smelting. We observe that human activities' hidden regular pattern offers possibility in predication, and this motivates us to infer urban air condition from the perspective of time series. In this paper, we focus on $PM_{2.5}$ based urban air quality, and introduce two kinds of time-series methods for real-time and fine-grained air quality prediction, harnessing historical air quality data reported by existing monitoring stations. The methods are evaluated based in the real-life $PM_{2.5}$ concentration data in the year of 2013 (January - December) in Wuhan, China.
Citation: Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003
References:
[1]

L. Bin-lian, G. Feng and J. Jian-hua, Analysis of pm2.5 current situation and the prevention control measures,, energy and energy conservation, (): 54. Google Scholar

[2]

D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele, Participatory air pollution monitoring using smartphones,, In the 2nd International Workshop on Mobile Sensing., (). Google Scholar

[3]

Y. Jiang, K. Li, L. Tian, R. Piedrahita, X. Yun, O. Mansata, Q. Lv, R. P. Dick, M. Hannigan and L. Shang, Maqs: a personalized mobile sensing system for indoor air quality monitoring,, in Proceedings of the 13th international conference on Ubiquitous computing, (2011), 271. doi: 10.1145/2030112.2030150. Google Scholar

[4]

L. N. Lamsal, R. V. Martin, A. V. Donkelaar, M. Steinbacher, E. A. Celarier, E. Bucsela, E. J. Dunlea and J. P. Pinto, Ground-level nitrogen dioxide concentrations inferred from the satellite-borne ozone monitoring instrument,, Journal of Geophysical Research, 113 (2008), 280. doi: 10.1029/2007JD009235. Google Scholar

[5]

R. V. Martin, L. Lamsal and A. Van Donkelaar, Satellite remote sensing of surface air quality,, Atmospheric Environment, 42 (2008), 7823. doi: 10.1016/j.atmosenv.2008.07.018. Google Scholar

[6]

S. Vardoulakis, B. E. Fisher, K. Pericleous and N. Gonzalez-Flesca, Modelling air quality in street canyons: A review,, Atmospheric environment, 37 (2003), 155. doi: 10.1016/S1352-2310(02)00857-9. Google Scholar

[7]

J. Yuan, Y. Zheng and X. Xie, Discovering regions of different functions in a city using human mobility and pois,, in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, (2012), 186. doi: 10.1145/2339530.2339561. Google Scholar

[8]

F. Zhang, D. Wilkie, Y. Zheng, and X. Xie., Sensing the pulse of urban refueling behavior,, Proceedings of Acm International Conference on Ubiquitous Computing Ubicomp 11 Acm., (). Google Scholar

[9]

Y. Zhang and L. Y. Yang, On the applications of the additive model and multiplicative model of time series analysis,, Statistics and Information Tribune., (). Google Scholar

[10]

Y. Zheng, F. Liu and H.-P. Hsieh, U-air: When urban air quality inference meets big data,, in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, (2013), 1436. doi: 10.1145/2487575.2488188. Google Scholar

[11]

Y. Zheng, Y. Liu, J. Yuan and X. Xie, Urban computing with taxicabs,, in Proceedings of the 13th international conference on Ubiquitous computing, (2011), 89. doi: 10.1145/2030112.2030126. Google Scholar

show all references

References:
[1]

L. Bin-lian, G. Feng and J. Jian-hua, Analysis of pm2.5 current situation and the prevention control measures,, energy and energy conservation, (): 54. Google Scholar

[2]

D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele, Participatory air pollution monitoring using smartphones,, In the 2nd International Workshop on Mobile Sensing., (). Google Scholar

[3]

Y. Jiang, K. Li, L. Tian, R. Piedrahita, X. Yun, O. Mansata, Q. Lv, R. P. Dick, M. Hannigan and L. Shang, Maqs: a personalized mobile sensing system for indoor air quality monitoring,, in Proceedings of the 13th international conference on Ubiquitous computing, (2011), 271. doi: 10.1145/2030112.2030150. Google Scholar

[4]

L. N. Lamsal, R. V. Martin, A. V. Donkelaar, M. Steinbacher, E. A. Celarier, E. Bucsela, E. J. Dunlea and J. P. Pinto, Ground-level nitrogen dioxide concentrations inferred from the satellite-borne ozone monitoring instrument,, Journal of Geophysical Research, 113 (2008), 280. doi: 10.1029/2007JD009235. Google Scholar

[5]

R. V. Martin, L. Lamsal and A. Van Donkelaar, Satellite remote sensing of surface air quality,, Atmospheric Environment, 42 (2008), 7823. doi: 10.1016/j.atmosenv.2008.07.018. Google Scholar

[6]

S. Vardoulakis, B. E. Fisher, K. Pericleous and N. Gonzalez-Flesca, Modelling air quality in street canyons: A review,, Atmospheric environment, 37 (2003), 155. doi: 10.1016/S1352-2310(02)00857-9. Google Scholar

[7]

J. Yuan, Y. Zheng and X. Xie, Discovering regions of different functions in a city using human mobility and pois,, in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, (2012), 186. doi: 10.1145/2339530.2339561. Google Scholar

[8]

F. Zhang, D. Wilkie, Y. Zheng, and X. Xie., Sensing the pulse of urban refueling behavior,, Proceedings of Acm International Conference on Ubiquitous Computing Ubicomp 11 Acm., (). Google Scholar

[9]

Y. Zhang and L. Y. Yang, On the applications of the additive model and multiplicative model of time series analysis,, Statistics and Information Tribune., (). Google Scholar

[10]

Y. Zheng, F. Liu and H.-P. Hsieh, U-air: When urban air quality inference meets big data,, in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, (2013), 1436. doi: 10.1145/2487575.2488188. Google Scholar

[11]

Y. Zheng, Y. Liu, J. Yuan and X. Xie, Urban computing with taxicabs,, in Proceedings of the 13th international conference on Ubiquitous computing, (2011), 89. doi: 10.1145/2030112.2030126. Google Scholar

[1]

Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control & Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008

[2]

Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial & Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507

[3]

Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720

[4]

Joseph R. Zipkin, Martin B. Short, Andrea L. Bertozzi. Cops on the dots in a mathematical model of urban crime and police response. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1479-1506. doi: 10.3934/dcdsb.2014.19.1479

[5]

Guangzhou Chen, Guijian Liu, Jiaquan Wang, Ruzhong Li. Identification of water quality model parameters using artificial bee colony algorithm. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 157-165. doi: 10.3934/naco.2012.2.157

[6]

Boguslaw Twarog, Robert Pekala, Jacek Bartman, Zbigniew Gomolka. The changes of air gap in inductive engines as vibration indicator aided by mathematical model and artificial neural network. Conference Publications, 2007, 2007 (Special) : 1005-1012. doi: 10.3934/proc.2007.2007.1005

[7]

Xiao-Qian Jiang, Lun-Chuan Zhang. Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-927. doi: 10.3934/dcdss.2019061

[8]

Daniel Glasscock, Andreas Koutsogiannis, Florian Karl Richter. Multiplicative combinatorial properties of return time sets in minimal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5891-5921. doi: 10.3934/dcds.2019258

[9]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[10]

Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333

[11]

Biswajit Sarkar, Arunava Majumder, Mitali Sarkar, Bikash Koli Dey, Gargi Roy. Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1085-1104. doi: 10.3934/jimo.2016063

[12]

Jian Lu, Lixin Shen, Chen Xu, Yuesheng Xu. Multiplicative noise removal with a sparsity-aware optimization model. Inverse Problems & Imaging, 2017, 11 (6) : 949-974. doi: 10.3934/ipi.2017044

[13]

Hanwool Na, Myeongmin Kang, Miyoun Jung, Myungjoo Kang. Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters. Inverse Problems & Imaging, 2019, 13 (1) : 117-147. doi: 10.3934/ipi.2019007

[14]

Ahmad Deeb, A. Hamdouni, Dina Razafindralandy. Comparison between Borel-Padé summation and factorial series, as time integration methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 393-408. doi: 10.3934/dcdss.2016003

[15]

Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255

[16]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems & Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[17]

A. Marigo, Benedetto Piccoli. Cooperative controls for air traffic management. Communications on Pure & Applied Analysis, 2003, 2 (3) : 355-369. doi: 10.3934/cpaa.2003.2.355

[18]

Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864

[19]

T. Tachim Medjo. The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1117-1138. doi: 10.3934/cpaa.2019054

[20]

Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure & Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024

 Impact Factor: 

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (0)

[Back to Top]