August  2019, 13(3): 513-516. doi: 10.3934/amc.2019032

Galois extensions, positive involutions and an application to unitary space-time coding

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

* Corresponding author: Thomas Unger

Received  September 2018 Revised  November 2018 Published  April 2019

We show that under certain conditions every maximal symmetric subfield of a central division algebra with positive unitary involution $ (B, \tau) $ will be a Galois extension of the fixed field of $ \tau $ and will "real split" $ (B, \tau) $. As an application we show that a sufficient condition for the existence of positive involutions on certain crossed product division algebras over number fields, considered by Berhuy in the context of unitary space-time coding, is also necessary, proving that Berhuy's construction is optimal.

Citation: Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032
References:
[1]

V. Astier and T. Unger, Positive cones on algebras with involution, preprint, arXiv: 1609.06601.Google Scholar

[2]

V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, J. Algebra, 508 (2018), 339-363. doi: 10.1016/j.jalgebra.2018.05.004. Google Scholar

[3]

G. Berhuy, Algebraic space-time codes based on division algebras with a unitary involution, Adv. Math. Commun., 8 (2014), 167-189. doi: 10.3934/amc.2014.8.167. Google Scholar

[4]

G. Berhuy and F. Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless Communication, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/191. Google Scholar

show all references

References:
[1]

V. Astier and T. Unger, Positive cones on algebras with involution, preprint, arXiv: 1609.06601.Google Scholar

[2]

V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, J. Algebra, 508 (2018), 339-363. doi: 10.1016/j.jalgebra.2018.05.004. Google Scholar

[3]

G. Berhuy, Algebraic space-time codes based on division algebras with a unitary involution, Adv. Math. Commun., 8 (2014), 167-189. doi: 10.3934/amc.2014.8.167. Google Scholar

[4]

G. Berhuy and F. Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless Communication, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/191. Google Scholar

[1]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[2]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[3]

Vincent Astier, Thomas Unger. Signatures, sums of hermitian squares and positive cones on algebras with involution. Electronic Research Announcements, 2018, 25: 16-26. doi: 10.3934/era.2018.25.003

[4]

Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323

[5]

Edmond W. H. Lee. Equational theories of unstable involution semigroups. Electronic Research Announcements, 2017, 24: 10-20. doi: 10.3934/era.2017.24.002

[6]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[7]

Uri Bader, Roman Muchnik. Boundary unitary representations-irreducibility and rigidity. Journal of Modern Dynamics, 2011, 5 (1) : 49-69. doi: 10.3934/jmd.2011.5.49

[8]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[9]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[10]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[11]

Stephen W. Taylor. Locally smooth unitary groups and applications to boundary control of PDEs. Evolution Equations & Control Theory, 2013, 2 (4) : 733-740. doi: 10.3934/eect.2013.2.733

[12]

Uri Bader, Jan Dymara. Boundary unitary representations—right-angled hyperbolic buildings. Journal of Modern Dynamics, 2016, 10: 413-437. doi: 10.3934/jmd.2016.10.413

[13]

Percy A. Deift, Thomas Trogdon, Govind Menon. On the condition number of the critically-scaled Laguerre Unitary Ensemble. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4287-4347. doi: 10.3934/dcds.2016.36.4287

[14]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[15]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[16]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[17]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[18]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[19]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[20]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

2018 Impact Factor: 0.879

Article outline

[Back to Top]