August  2017, 11(3): 549-566. doi: 10.3934/amc.2017043

Generalized bent functions -sufficient conditions and related constructions

University of Primorska, FAMNIT, Koper, Slovenia

Received  November 2015 Published  August 2017

The necessary and sufficient conditions for a class of functions $f:\mathbb{Z}_2^n \to \mathbb{Z}_q$, where $q ≥q 2$ is an even positive integer, have been recently identified for $q=4$ and $q=8$. In this article we give an alternative characterization of the generalized Walsh-Hadamard transform in terms of the Walsh spectra of the component Boolean functions of $f$, which then allows us to derive sufficient conditions that $f$ is generalized bent for any even $q$. The case when $q$ is not a power of two, which has not been addressed previously, is treated separately and a suitable representation in terms of the component functions is employed. Consequently, the derived results lead to generic construction methods of this class of functions. The main remaining task, which is not answered in this article, is whether the sufficient conditions are also necessary. There are some indications that this might be true which is also formally confirmed for generalized bent functions that belong to the class of generalized Maiorana-McFarland functions (GMMF), but still we were unable to completely specify (in terms of necessity) gbent conditions.

Citation: Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043
References:
[1]

M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87. Google Scholar

[2]

S. Hodžić and E. Pasalic, Generalized bent functions -Some general construction methods and related necessary and sufficient conditions, Crypt. Commun., 7 (2015), 469-483. doi: 10.1007/s12095-015-0126-9. Google Scholar

[3]

S. Hodžić and E. Pasalic, Construction methods for generalized bent functions preprint, arXiv: 1604.02730Google Scholar

[4]

P. V. KumarR. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Combin. Theory Ser. A, 40 (1985), 90-107. doi: 10.1016/0097-3165(85)90049-4. Google Scholar

[5]

H. LiuK. Feng and R. Feng, Nonexistence of generalized bent functions from $\mathbb Z^n_2$ to $\mathbb Z_m$, Des. Codes Crypt., 82 (2017), 647-662. doi: 10.1007/s10623-016-0192-9. Google Scholar

[6]

P. Sarkar and S. Maitra, Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes, Theory Comp. Syst., 35 (2002), 39-57. doi: 10.1007/s00224-001-1019-1. Google Scholar

[7]

K. U. Schmidt, Complementary sets, generalized Reed-Muller Codes, and power control for OFDM, IEEE Trans. Inf. Theory, 52 (2007), 808-814. doi: 10.1109/TIT.2006.889723. Google Scholar

[8]

K. U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, in IEEE Int. Symp. Inf. Theory – ISIT'2007, Nice, France, 2007. doi: 10.1109/TIT.2009.2013041. Google Scholar

[9]

J. Seberry and X. -M. Zhang, Highly nonlinear 0-1 balanced Boolean functions satisfying strict avalanche criterion, in Advances in Cryptography -Auscrypt'92, Springer, Berlin, 1993,145–755. doi: 10.1007/3-540-57220-1. Google Scholar

[10]

B. K. Singh, Secondary constructions on generalized bent functions IACR Crypt. ePrint Arch. 2012, p. 17.Google Scholar

[11]

B. K. Singh, On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class, Inf. Sci. Lett., 2 (2013), 139-145. Google Scholar

[12]

P. Solé and N. Tokareva, Connections between quaternary and binary bent functions Crypt. ePrint Arch. 2009, available at https://eprint.iacr.org/2009/544.pdfGoogle Scholar

[13]

V. I. Solodovnikov, Bent functions from a finite Abelian group into a finite Abelian group, Discr. Math. Appl., 12 (2002), 111-126. doi: 10.1515/dma-2002-0203. Google Scholar

[14]

P. Stanica and T. Martinsen, Octal bent generalized Boolean functions preprint, arXiv: 1102.4812Google Scholar

[15]

P. StanicaT. MartinsenS. Gangopadhyay and B. K. Singh, Bent and generalized bent Boolean functions, Des. Codes Crypt., 69 (2013), 77-94. doi: 10.1007/s10623-012-9622-5. Google Scholar

[16]

N. N. Tokareva, Generalizations of bent functions –a survey, J. Appl. Industr. Math., 5 (2011), 110-129. doi: 10.1134/S1990478911010133. Google Scholar

show all references

References:
[1]

M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87. Google Scholar

[2]

S. Hodžić and E. Pasalic, Generalized bent functions -Some general construction methods and related necessary and sufficient conditions, Crypt. Commun., 7 (2015), 469-483. doi: 10.1007/s12095-015-0126-9. Google Scholar

[3]

S. Hodžić and E. Pasalic, Construction methods for generalized bent functions preprint, arXiv: 1604.02730Google Scholar

[4]

P. V. KumarR. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Combin. Theory Ser. A, 40 (1985), 90-107. doi: 10.1016/0097-3165(85)90049-4. Google Scholar

[5]

H. LiuK. Feng and R. Feng, Nonexistence of generalized bent functions from $\mathbb Z^n_2$ to $\mathbb Z_m$, Des. Codes Crypt., 82 (2017), 647-662. doi: 10.1007/s10623-016-0192-9. Google Scholar

[6]

P. Sarkar and S. Maitra, Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes, Theory Comp. Syst., 35 (2002), 39-57. doi: 10.1007/s00224-001-1019-1. Google Scholar

[7]

K. U. Schmidt, Complementary sets, generalized Reed-Muller Codes, and power control for OFDM, IEEE Trans. Inf. Theory, 52 (2007), 808-814. doi: 10.1109/TIT.2006.889723. Google Scholar

[8]

K. U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, in IEEE Int. Symp. Inf. Theory – ISIT'2007, Nice, France, 2007. doi: 10.1109/TIT.2009.2013041. Google Scholar

[9]

J. Seberry and X. -M. Zhang, Highly nonlinear 0-1 balanced Boolean functions satisfying strict avalanche criterion, in Advances in Cryptography -Auscrypt'92, Springer, Berlin, 1993,145–755. doi: 10.1007/3-540-57220-1. Google Scholar

[10]

B. K. Singh, Secondary constructions on generalized bent functions IACR Crypt. ePrint Arch. 2012, p. 17.Google Scholar

[11]

B. K. Singh, On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class, Inf. Sci. Lett., 2 (2013), 139-145. Google Scholar

[12]

P. Solé and N. Tokareva, Connections between quaternary and binary bent functions Crypt. ePrint Arch. 2009, available at https://eprint.iacr.org/2009/544.pdfGoogle Scholar

[13]

V. I. Solodovnikov, Bent functions from a finite Abelian group into a finite Abelian group, Discr. Math. Appl., 12 (2002), 111-126. doi: 10.1515/dma-2002-0203. Google Scholar

[14]

P. Stanica and T. Martinsen, Octal bent generalized Boolean functions preprint, arXiv: 1102.4812Google Scholar

[15]

P. StanicaT. MartinsenS. Gangopadhyay and B. K. Singh, Bent and generalized bent Boolean functions, Des. Codes Crypt., 69 (2013), 77-94. doi: 10.1007/s10623-012-9622-5. Google Scholar

[16]

N. N. Tokareva, Generalizations of bent functions –a survey, J. Appl. Industr. Math., 5 (2011), 110-129. doi: 10.1134/S1990478911010133. Google Scholar

[1]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[2]

Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615

[3]

L. Bakker, G. Conner. A class of generalized symmetries of smooth flows. Communications on Pure & Applied Analysis, 2004, 3 (2) : 183-195. doi: 10.3934/cpaa.2004.3.183

[4]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[5]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[6]

Limin Wen, Xianyi Wu, Xiaobing Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial & Management Optimization, 2009, 5 (4) : 893-910. doi: 10.3934/jimo.2009.5.893

[7]

Mihaela Roxana Nicolai, Dan Tiba. Implicit functions and parametrizations in dimension three: Generalized solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2701-2710. doi: 10.3934/dcds.2015.35.2701

[8]

Hiroyuki Kobayashi, Shingo Takeuchi. Applications of generalized trigonometric functions with two parameters. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1509-1521. doi: 10.3934/cpaa.2019072

[9]

Tao Chen, Linda Keen. Slices of parameter spaces of generalized Nevanlinna functions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5659-5681. doi: 10.3934/dcds.2019248

[10]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[11]

Yaotian Shen, Youjun Wang. A class of generalized quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2016, 15 (3) : 853-870. doi: 10.3934/cpaa.2016.15.853

[12]

Xiao-Hong Liu, Wei-Zhe Gu. Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones. Journal of Industrial & Management Optimization, 2010, 6 (2) : 363-380. doi: 10.3934/jimo.2010.6.363

[13]

Zhong-Qing Wang, Ben-Yu Guo, Yan-Na Wu. Pseudospectral method using generalized Laguerre functions for singular problems on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1019-1038. doi: 10.3934/dcdsb.2009.11.1019

[14]

H.Thomas Banks, Danielle Robbins, Karyn L. Sutton. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1301-1333. doi: 10.3934/mbe.2013.10.1301

[15]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 539-560. doi: 10.3934/dcdss.2020030

[16]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[17]

Josep M. Olm, Xavier Ros-Oton. Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1603-1614. doi: 10.3934/dcds.2013.33.1603

[18]

Alina Ostafe, Igor E. Shparlinski, Arne Winterhof. On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences. Advances in Mathematics of Communications, 2010, 4 (3) : 369-379. doi: 10.3934/amc.2010.4.369

[19]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[20]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (11)
  • HTML views (5)
  • Cited by (1)

Other articles
by authors

[Back to Top]