August  2017, 11(3): 471-480. doi: 10.3934/amc.2017039

The weight distributions of constacyclic codes

1. 

School of Mathematics and Statistics, Zaozhuang University, Zaozhuang, Shandong 277160, China

2. 

State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China

3. 

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

4. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211100, China

5. 

Science and Technology on Information Assurance Laboratory, Beijing 100072, China

Received  June 2015 Published  August 2017

Fund Project: The paper was supported by National Natural Science Foundation of China under Grants 11601475,61772015 and Foundation of Science and Technology on Information Assurance Laboratory under Grants KJ-15-009,6142112010202

Let $\Bbb F_q$ be a finite field with $q$ elements. Suppose that $a, λ∈ \Bbb F_q^*$, $a^n=λ$ with $n|(q-1)$. In this paper, we determine the weight distribution of a class of $λ$-constacyclic codes of length $nm$ with the parity check polynomial $h(x)=(x^m-aξ^{st})(x^m-aξ^{s(t+1)})...(x^m-aξ^{s(t+r-1)})$ and $n>(r-1)m$, where $s,t, r$ are positive integers and $ξ∈ \Bbb F_q$ is a primitive n-th root of unity. Moreover, we give the weight distributions of $λ$-constacyclic codes of length $nm$ explicitly in several cases: (1) $r=1$, $n>1$; (2) $r=2$, $m=2$ and $n>2$; (3) $r=2$, $m=3$ and $n>3$; (4) $r=3$, $m=2$ and $n>4$.

Citation: Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039
References:
[1]

N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symb. Comput., 45 (2010), 723-733. doi: 10.1016/j.jsc.2010.03.007. Google Scholar

[2]

P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, 108 (2004), 247-259. doi: 10.1016/j.jcta.2004.07.001. Google Scholar

[3]

B. ChenH. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $\ell p^s$ and their duals, Discr. Appl. Math., 177 (2014), 60-70. doi: 10.1016/j.disc.2013.01.024. Google Scholar

[4]

B. ChenH. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2\ell^mp^n$, Finite Fields Appl., 33 (2015), 137-159. doi: 10.1016/j.ffa.2014.11.006. Google Scholar

[5]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231. Google Scholar

[6]

C. Ding, The weight distributions of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960. doi: 10.1109/TIT.2008.2011511. Google Scholar

[7]

C. DingY. LiuC. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006. doi: 10.1109/TIT.2011.2165314. Google Scholar

[8]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discr. Math., 313 (2013), 434-446. doi: 10.1016/j.disc.2012.11.009. Google Scholar

[9]

H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl., 14 (2008), 22-40. doi: 10.1016/j.ffa.2007.07.001. Google Scholar

[10]

H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143. doi: 10.1016/j.ffa.2011.07.003. Google Scholar

[11]

H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discr. Math., 313 (2013), 983-991. doi: 10.1016/j.disc.2013.01.024. Google Scholar

[12]

C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303. doi: 10.1109/TIT.2013.2287211. Google Scholar

[13]

C. LiQ. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902. doi: 10.1109/TIT.2014.2317785. Google Scholar

[14]

C. LiQ. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114. doi: 10.1016/j.ffa.2014.01.009. Google Scholar

[15]

C. LiX. Zeng and L. Hu, A class of binary cyclic codes with five weights}, Sci. China Math., 53 (2010), 3279-3286. doi: 10.1007/s11425-010-4062-z. Google Scholar

[16]

R. Lidl and H. Niederreiter, Finite Fields Cambridge Univ. Press, Cambridge, 2008. Google Scholar

[17]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344. doi: 10.1109/TIT.2008.2006424. Google Scholar

[18]

J. LuoY. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inf. Theory, 56 (2010), 2130-2142. doi: 10.1109/TIT.2010.2043783. Google Scholar

[19]

C. MaL. ZengY. LiuD. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402. doi: 10.1109/TIT.2010.2090272. Google Scholar

[20]

G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104. doi: 10.1016/S1071-5797(03)00045-5. Google Scholar

[21]

G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, 58 (2012), 4862-4869. doi: 10.1109/TIT.2012.2193376. Google Scholar

[22]

B. WangC. TangY. QiY. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259. doi: 10.1109/TIT.2012.2210386. Google Scholar

[23]

X. WangD. ZhengL. Hu and X. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207. doi: 10.1016/j.ffa.2015.01.012. Google Scholar

[24]

J. Wolfmann, Weight distributions of some binary primitive cyclic codes, IEEE Trans. Inf. Theory, 40 (2004), 2068-2071. doi: 10.1109/18.340482. Google Scholar

[25]

M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945. doi: 10.1016/j.ffa.2012.06.001. Google Scholar

[26]

J. YangM. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993. doi: 10.1109/TIT.2013.2266731. Google Scholar

[27]

J. YuanC. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717. doi: 10.1109/TIT.2005.862125. Google Scholar

[28]

X. ZengL. HuW. JiangQ. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73. doi: 10.1016/j.ffa.2012.06.001. Google Scholar

[29]

Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93. doi: 10.1016/j.ffa.2013.08.005. Google Scholar

[30]

Z. ZhouC. DingJ. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682. doi: 10.1109/TIT.2013.2267722. Google Scholar

[31]

D. ZhengX. WangL. Hu and X. Zeng, The weight distributions of two classes of p-ary cyclic codes, Finite Fields Appl., 29 (2014), 202-224. doi: 10.1016/j.ffa.2014.05.001. Google Scholar

[32]

D. ZhengX. WangX. Zeng and L. Hu, The weight distributions of a family of p-ary cyclic codes, Des. Codes Crypt., 75 (2015), 263-275. doi: 10.1007/s10623-013-9908-2. Google Scholar

[33]

X. ZhuQ. Yue and L. Hu, Weight distribution of cyclic codes of length $tl^m$, Discr. Math., 338 (2015), 844-856. Google Scholar

show all references

References:
[1]

N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symb. Comput., 45 (2010), 723-733. doi: 10.1016/j.jsc.2010.03.007. Google Scholar

[2]

P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, 108 (2004), 247-259. doi: 10.1016/j.jcta.2004.07.001. Google Scholar

[3]

B. ChenH. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $\ell p^s$ and their duals, Discr. Appl. Math., 177 (2014), 60-70. doi: 10.1016/j.disc.2013.01.024. Google Scholar

[4]

B. ChenH. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2\ell^mp^n$, Finite Fields Appl., 33 (2015), 137-159. doi: 10.1016/j.ffa.2014.11.006. Google Scholar

[5]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231. Google Scholar

[6]

C. Ding, The weight distributions of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960. doi: 10.1109/TIT.2008.2011511. Google Scholar

[7]

C. DingY. LiuC. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006. doi: 10.1109/TIT.2011.2165314. Google Scholar

[8]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discr. Math., 313 (2013), 434-446. doi: 10.1016/j.disc.2012.11.009. Google Scholar

[9]

H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl., 14 (2008), 22-40. doi: 10.1016/j.ffa.2007.07.001. Google Scholar

[10]

H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143. doi: 10.1016/j.ffa.2011.07.003. Google Scholar

[11]

H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discr. Math., 313 (2013), 983-991. doi: 10.1016/j.disc.2013.01.024. Google Scholar

[12]

C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303. doi: 10.1109/TIT.2013.2287211. Google Scholar

[13]

C. LiQ. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902. doi: 10.1109/TIT.2014.2317785. Google Scholar

[14]

C. LiQ. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114. doi: 10.1016/j.ffa.2014.01.009. Google Scholar

[15]

C. LiX. Zeng and L. Hu, A class of binary cyclic codes with five weights}, Sci. China Math., 53 (2010), 3279-3286. doi: 10.1007/s11425-010-4062-z. Google Scholar

[16]

R. Lidl and H. Niederreiter, Finite Fields Cambridge Univ. Press, Cambridge, 2008. Google Scholar

[17]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344. doi: 10.1109/TIT.2008.2006424. Google Scholar

[18]

J. LuoY. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inf. Theory, 56 (2010), 2130-2142. doi: 10.1109/TIT.2010.2043783. Google Scholar

[19]

C. MaL. ZengY. LiuD. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402. doi: 10.1109/TIT.2010.2090272. Google Scholar

[20]

G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104. doi: 10.1016/S1071-5797(03)00045-5. Google Scholar

[21]

G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, 58 (2012), 4862-4869. doi: 10.1109/TIT.2012.2193376. Google Scholar

[22]

B. WangC. TangY. QiY. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259. doi: 10.1109/TIT.2012.2210386. Google Scholar

[23]

X. WangD. ZhengL. Hu and X. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207. doi: 10.1016/j.ffa.2015.01.012. Google Scholar

[24]

J. Wolfmann, Weight distributions of some binary primitive cyclic codes, IEEE Trans. Inf. Theory, 40 (2004), 2068-2071. doi: 10.1109/18.340482. Google Scholar

[25]

M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945. doi: 10.1016/j.ffa.2012.06.001. Google Scholar

[26]

J. YangM. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993. doi: 10.1109/TIT.2013.2266731. Google Scholar

[27]

J. YuanC. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717. doi: 10.1109/TIT.2005.862125. Google Scholar

[28]

X. ZengL. HuW. JiangQ. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73. doi: 10.1016/j.ffa.2012.06.001. Google Scholar

[29]

Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93. doi: 10.1016/j.ffa.2013.08.005. Google Scholar

[30]

Z. ZhouC. DingJ. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682. doi: 10.1109/TIT.2013.2267722. Google Scholar

[31]

D. ZhengX. WangL. Hu and X. Zeng, The weight distributions of two classes of p-ary cyclic codes, Finite Fields Appl., 29 (2014), 202-224. doi: 10.1016/j.ffa.2014.05.001. Google Scholar

[32]

D. ZhengX. WangX. Zeng and L. Hu, The weight distributions of a family of p-ary cyclic codes, Des. Codes Crypt., 75 (2015), 263-275. doi: 10.1007/s10623-013-9908-2. Google Scholar

[33]

X. ZhuQ. Yue and L. Hu, Weight distribution of cyclic codes of length $tl^m$, Discr. Math., 338 (2015), 844-856. Google Scholar

Table 1.  Weight distribution 
Weight Frequency
0 1
$n-1$ $2n(q-1)$
$n$ $2(q-1)(q+1-n)$
$2n-2$ $n^2(q-1)^2$
$2n-1$ $2n(q-1)^2(q+1-n)$
$2n$ $(q-1)^2(q+1-n)^2$
Weight Frequency
0 1
$n-1$ $2n(q-1)$
$n$ $2(q-1)(q+1-n)$
$2n-2$ $n^2(q-1)^2$
$2n-1$ $2n(q-1)^2(q+1-n)$
$2n$ $(q-1)^2(q+1-n)^2$
Table 2.  Weight distribution 
Weight Frequency
0 1
$n-1$ $3n(q-1)$
$n$ $3(q-1)(q+1-n)$
$2n-2$ $3n^2(q-1)^2$
$2n-1$ $6n(q-1)^2(q+1-n)$
$2n$ $3(q-1)^2(q+1-n)^2$
$3n-3$ $n^3(q-1)^3$
$3n-2$ $3n^2(q-1)^3(q+1-n)$
$3n-1$ $3n(q-1)^3(q+1-n)^2$
$3n$ $(q-1)^3(q+1-n)^3$
Weight Frequency
0 1
$n-1$ $3n(q-1)$
$n$ $3(q-1)(q+1-n)$
$2n-2$ $3n^2(q-1)^2$
$2n-1$ $6n(q-1)^2(q+1-n)$
$2n$ $3(q-1)^2(q+1-n)^2$
$3n-3$ $n^3(q-1)^3$
$3n-2$ $3n^2(q-1)^3(q+1-n)$
$3n-1$ $3n(q-1)^3(q+1-n)^2$
$3n$ $(q-1)^3(q+1-n)^3$
Table 3.  Weight distribution 
Weight Frequency
0 1
$n-2$ $n(n-1)(q-1)$
$n-1$ $2n(q-1)(q-n+2)$
$n$ $2(q-1)^3-2(n-3)(q-1)^2+(n-2)(n-3)(q-1)$
$2n-4$ $\frac {n^2(n-1)^2}4 (q-1)^2$
$2n-3$ $n^2(q-1)^2(n-1)(q-n+2)$
$2n-2$ $n^2(q-1)^2(q-n+2)^2+n(n-1)(q-1)^2[(q-1)^2-(n-3)(q-1)+C_{n-2}^2]$
$2n-1$ $2n(q-n+2)(q-1)^4-2n(n-3)(q-n+2)(q-1)^3$
$+n(n-2)(n-3)(q-n+2)(q-1)^2$
$2n$ $(q-1)^6+(n-3)^2(q-1)^4+\frac {(n-2)^2(n-3)^2}4 (q-1)^2+(n-2)(n-3)(q-1)^4$
$-2(n-3)(q-1)^5-(n-2)(n-3)^2(q-1)^3$
Weight Frequency
0 1
$n-2$ $n(n-1)(q-1)$
$n-1$ $2n(q-1)(q-n+2)$
$n$ $2(q-1)^3-2(n-3)(q-1)^2+(n-2)(n-3)(q-1)$
$2n-4$ $\frac {n^2(n-1)^2}4 (q-1)^2$
$2n-3$ $n^2(q-1)^2(n-1)(q-n+2)$
$2n-2$ $n^2(q-1)^2(q-n+2)^2+n(n-1)(q-1)^2[(q-1)^2-(n-3)(q-1)+C_{n-2}^2]$
$2n-1$ $2n(q-n+2)(q-1)^4-2n(n-3)(q-n+2)(q-1)^3$
$+n(n-2)(n-3)(q-n+2)(q-1)^2$
$2n$ $(q-1)^6+(n-3)^2(q-1)^4+\frac {(n-2)^2(n-3)^2}4 (q-1)^2+(n-2)(n-3)(q-1)^4$
$-2(n-3)(q-1)^5-(n-2)(n-3)^2(q-1)^3$
[1]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[2]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[3]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[4]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[5]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[6]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[7]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[8]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[9]

Thomas Gauthier, Gabriel Vigny. Distribution of postcritically finite polynomials Ⅱ: Speed of convergence. Journal of Modern Dynamics, 2017, 11: 57-98. doi: 10.3934/jmd.2017004

[10]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[11]

Somphong Jitman, Ekkasit Sangwisut. The average dimension of the Hermitian hull of constacyclic codes over finite fields of square order. Advances in Mathematics of Communications, 2018, 12 (3) : 451-463. doi: 10.3934/amc.2018027

[12]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[13]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[14]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[15]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[16]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[17]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[18]

Keisuke Hakuta, Hisayoshi Sato, Tsuyoshi Takagi. On tameness of Matsumoto-Imai central maps in three variables over the finite field $\mathbb F_2$. Advances in Mathematics of Communications, 2016, 10 (2) : 221-228. doi: 10.3934/amc.2016002

[19]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[20]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (13)
  • HTML views (7)
  • Cited by (0)

Other articles
by authors

[Back to Top]