# American Institute of Mathematical Sciences

May  2017, 11(2): 329-338. doi: 10.3934/amc.2017025

## On the covering radius of some binary cyclic codes

 1 Department of Computer Science, University of Puerto Rico, Río Piedras, San Juan, PR 00931 2 Department of Mathematics, University of Puerto Rico, Río Piedras, San Juan, PR 00931

* Corresponding author

Received  February 2016 Revised  March 2016 Published  May 2017

We compute the covering radius of some families of binary cyclic codes. In particular, we compute the covering radius of cyclic codes with two zeros and minimum distance greater than 3. We also compute the covering radius of some binary primitive BCH codes over $\mathbb{F}_{2^f}$, where $f=7, 8$.

Citation: Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025
##### References:

show all references

##### References:
Construction of a solution for $\alpha_1 = 1 \in \mathbb{F}_{2^7}$. By choosing numbers that have an even quantity of 1's for all columns except the least significant, we guarantee that solution $\alpha_1 = 0000001$. The values for $\left(x_1,\ldots,x_5\right)$ are read from the rows
Codes ${\mathcal C}_{1,d}$ with minimum distance $\geq 4$ and covering radius 3
 ${\mathcal C}_{1,d}/\mathbb{F}_{128}$ ${\mathcal C}_{1,d}/\mathbb{F}_{512}$ ${\mathcal C}_{1,d}/\mathbb{F}_{2048}$ 3, 5, 9, 11, 13, 1521, 23, 27, 29, 43 3, 5, 13, 17, 19, 2731, 43, 47, 87 3, 5, 9, 11, 13, 17, 25, 33, 35, 37, 43, 47, 49 57, 63, 81, 87, 95,105,121,139,141,143,151 171,187,189,206,221,229,231,249 295,311,315,343,363,365,413,429
 ${\mathcal C}_{1,d}/\mathbb{F}_{128}$ ${\mathcal C}_{1,d}/\mathbb{F}_{512}$ ${\mathcal C}_{1,d}/\mathbb{F}_{2048}$ 3, 5, 9, 11, 13, 1521, 23, 27, 29, 43 3, 5, 13, 17, 19, 2731, 43, 47, 87 3, 5, 9, 11, 13, 17, 25, 33, 35, 37, 43, 47, 49 57, 63, 81, 87, 95,105,121,139,141,143,151 171,187,189,206,221,229,231,249 295,311,315,343,363,365,413,429
Codes ${\mathcal C}_{1,d}$ with minimum distance $\geq 4$ and covering radius 3
 ${\mathcal C}_{1,d}/\mathbb{F}_{2^{13}}$ 3, 5, 9, 11, 13, 17, 19, 21, 33, 43, 57, 65, 67, 71, 95, 97,113,127,129,147,161,171,191,205,225,241,287,347,363,367,405,483,485,497,631,635,683,745,747,749,869,911,919,939,949,953,973,1367,1453,1461,1639,1643,1645,1691,1707,2047,2731
 ${\mathcal C}_{1,d}/\mathbb{F}_{2^{13}}$ 3, 5, 9, 11, 13, 17, 19, 21, 33, 43, 57, 65, 67, 71, 95, 97,113,127,129,147,161,171,191,205,225,241,287,347,363,367,405,483,485,497,631,635,683,745,747,749,869,911,919,939,949,953,973,1367,1453,1461,1639,1643,1645,1691,1707,2047,2731
Covering radius of binary primitive $BCH$ codes
 $n$ $BCH(e)$ Covering Radius 127 $BCH(3)$ 5 127 $BCH(4)$ 7 127 $BCH(5)$ 9 255 $BCH(3)$ 5 255 $BCH(4)$ 7
 $n$ $BCH(e)$ Covering Radius 127 $BCH(3)$ 5 127 $BCH(4)$ 7 127 $BCH(5)$ 9 255 $BCH(3)$ 5 255 $BCH(4)$ 7
Covering radius of cyclic codes of type ${\mathcal C}_{1, 2^i+1, 2^{2i}+1}$
 $n$ ${\mathcal C}_{1, 2^i+1, 2^{2i}+1}$ Covering Radius 31 ${\mathcal C}_{1, 5, 17}$ 5 127 ${\mathcal C}_{1, 5, 17}$ 5 127 ${\mathcal C}_{1, 9, 65}$ 5 255 ${\mathcal C}_{1, 9, 65}$ 5
 $n$ ${\mathcal C}_{1, 2^i+1, 2^{2i}+1}$ Covering Radius 31 ${\mathcal C}_{1, 5, 17}$ 5 127 ${\mathcal C}_{1, 5, 17}$ 5 127 ${\mathcal C}_{1, 9, 65}$ 5 255 ${\mathcal C}_{1, 9, 65}$ 5
 [1] Tsonka Baicheva, Iliya Bouyukliev. On the least covering radius of binary linear codes of dimension 6. Advances in Mathematics of Communications, 2010, 4 (3) : 399-404. doi: 10.3934/amc.2010.4.399 [2] José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018 [3] Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129-137. doi: 10.3934/amc.2014.8.129 [4] Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175 [5] Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 [6] Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83 [7] Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225 [8] Otávio J. N. T. N. dos Santos, Emerson L. Monte Carmelo. A connection between sumsets and covering codes of a module. Advances in Mathematics of Communications, 2018, 12 (3) : 595-605. doi: 10.3934/amc.2018035 [9] Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 [10] Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 [11] Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 [12] Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177 [13] Joaquim Borges, Ivan Yu. Mogilnykh, Josep Rifà, Faina I. Solov'eva. Structural properties of binary propelinear codes. Advances in Mathematics of Communications, 2012, 6 (3) : 329-346. doi: 10.3934/amc.2012.6.329 [14] Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015 [15] John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019 [16] Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273 [17] Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 [18] Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251 [19] Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55 [20] Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

2018 Impact Factor: 0.879