May  2017, 11(2): 293-299. doi: 10.3934/amc.2017021

Explicit constructions of bent functions from pseudo-planar functions

1. 

Department of Mathematical Sciences, UAE University, PO Box 15551, Al Ain, UAE

2. 

Department of Mathematics, University of Paris VIII and Paris XIII and Télécom ParisTech, LAGA, UMR 7539, CNRS, Sorbonne Paris Cité

1The first author was supported by UAEU grant 31S107.

Received  February 2016 Revised  March 2016 Published  May 2017

We investigate explicit constructions of bent functions which are linear on elements of spreads. Our constructions are obtained from symplectic presemifields which are associated to pseudo-planar functions. The following diagram gives an indication of the main interconnections arising in this paper: $pseudo-planar\ functions \longleftrightarrow\ commutaive\ presemifields \longrightarrow bent\ functions$

Citation: Kanat Abdukhalikov, Sihem Mesnager. Explicit constructions of bent functions from pseudo-planar functions. Advances in Mathematics of Communications, 2017, 11 (2) : 293-299. doi: 10.3934/amc.2017021
References:
[1]

K. Abdukhalikov, Symplectic spreads, planar functions and mutually unbiased bases, J. Algebraic Combin., 41 (2015), 1055-1077. doi: 10.1007/s10801-014-0565-y.

[2]

K. Abdukhalikov and S. Mesnager, Bent functions linear on elements of some classical spreads and semifields spreads, Crypt. Commun., 9 (2017), 3-21. doi: 10.1007/s12095-016-0195-4.

[3]

C. Carlet, More $\mathcal PS$ and $\mathcal H$-like bent functions Crypt. ePrint Arch. Report 2015/168.

[4]

C. Carlet and S. Mesnager, On Dillon's class H of bent functions, Niho bent functions and o-polynomials, J. Combin. Theory Ser. A, 118 (2011), 2392-2410. doi: 10.1016/j.jcta.2011.06.005.

[5]

C. Carlet and S. Mesnager, Four decades of research on bent functions, J. Des. Codes Crypt., 78 (2016), 5-50. doi: 10.1007/s10623-015-0145-8.

[6]

A. ÇeşmelioğluW. Meidl and A. Pott, Bent functions, spreads, and o-polynomials, SIAM J. Discrete Math., 29 (2015), 854-867. doi: 10.1137/140963273.

[7]

J. Dillon, Elementary Hadamard Difference Sets Ph. D thesis, Univ. Maryland, 1974.

[8]

S. HuS. LiT. ZhangT. Feng and G. Ge, New pseudo-planar binomials in characteristic two and related schemes, J. Des. Codes Crypt., 76 (2015), 345-360. doi: 10.1007/s10623-014-9958-0.

[9]

N. Knarr, Quasifields of symplectic translation planes, J. Combin. Theory Ser. A, 116 (2009), 1080-1086. doi: 10.1016/j.jcta.2008.11.012.

[10]

S. Mesnager, Bent functions from spreads, J. Amer. Math. Soc. Contemp. Math., 632 (2015), 295-316. doi: 10.1090/conm/632/12634.

[11]

S. Mesnager, On $p$-ary bent functions from (maximal) partial spreads in Int. Conf. Finite Field Appl. Fq12 New York, 2015. doi: 10.1090/conm/632/12634.

[12]

S. Mesnager, Binary Bent Functions: Fundamentals and Results Springer-Verlag, 2016. doi: 10.1007/978-3-319-32595-8.

[13]

O. S. Rothaus, On ''bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.

[14]

Z. Scherr and M. E. Zieve, Some planar monomials in characteristic 2, Ann. Comb., 18 (2014), 723-729. doi: 10.1007/s00026-014-0248-3.

[15]

K.-U. Schmidt and Y. Zhou, Planar functions over fields of characteristic two, J. Algebraic Combin., 40 (2014), 503-526. doi: 10.1007/s10801-013-0496-z.

show all references

References:
[1]

K. Abdukhalikov, Symplectic spreads, planar functions and mutually unbiased bases, J. Algebraic Combin., 41 (2015), 1055-1077. doi: 10.1007/s10801-014-0565-y.

[2]

K. Abdukhalikov and S. Mesnager, Bent functions linear on elements of some classical spreads and semifields spreads, Crypt. Commun., 9 (2017), 3-21. doi: 10.1007/s12095-016-0195-4.

[3]

C. Carlet, More $\mathcal PS$ and $\mathcal H$-like bent functions Crypt. ePrint Arch. Report 2015/168.

[4]

C. Carlet and S. Mesnager, On Dillon's class H of bent functions, Niho bent functions and o-polynomials, J. Combin. Theory Ser. A, 118 (2011), 2392-2410. doi: 10.1016/j.jcta.2011.06.005.

[5]

C. Carlet and S. Mesnager, Four decades of research on bent functions, J. Des. Codes Crypt., 78 (2016), 5-50. doi: 10.1007/s10623-015-0145-8.

[6]

A. ÇeşmelioğluW. Meidl and A. Pott, Bent functions, spreads, and o-polynomials, SIAM J. Discrete Math., 29 (2015), 854-867. doi: 10.1137/140963273.

[7]

J. Dillon, Elementary Hadamard Difference Sets Ph. D thesis, Univ. Maryland, 1974.

[8]

S. HuS. LiT. ZhangT. Feng and G. Ge, New pseudo-planar binomials in characteristic two and related schemes, J. Des. Codes Crypt., 76 (2015), 345-360. doi: 10.1007/s10623-014-9958-0.

[9]

N. Knarr, Quasifields of symplectic translation planes, J. Combin. Theory Ser. A, 116 (2009), 1080-1086. doi: 10.1016/j.jcta.2008.11.012.

[10]

S. Mesnager, Bent functions from spreads, J. Amer. Math. Soc. Contemp. Math., 632 (2015), 295-316. doi: 10.1090/conm/632/12634.

[11]

S. Mesnager, On $p$-ary bent functions from (maximal) partial spreads in Int. Conf. Finite Field Appl. Fq12 New York, 2015. doi: 10.1090/conm/632/12634.

[12]

S. Mesnager, Binary Bent Functions: Fundamentals and Results Springer-Verlag, 2016. doi: 10.1007/978-3-319-32595-8.

[13]

O. S. Rothaus, On ''bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.

[14]

Z. Scherr and M. E. Zieve, Some planar monomials in characteristic 2, Ann. Comb., 18 (2014), 723-729. doi: 10.1007/s00026-014-0248-3.

[15]

K.-U. Schmidt and Y. Zhou, Planar functions over fields of characteristic two, J. Algebraic Combin., 40 (2014), 503-526. doi: 10.1007/s10801-013-0496-z.

[1]

Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21

[2]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[3]

Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305

[4]

Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026

[5]

Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041

[6]

Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043

[7]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[8]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[9]

Joan-Josep Climent, Francisco J. García, Verónica Requena. On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables. Advances in Mathematics of Communications, 2008, 2 (4) : 421-431. doi: 10.3934/amc.2008.2.421

[10]

Ayça Çeşmelioǧlu, Wilfried Meidl, Alexander Pott. On the dual of (non)-weakly regular bent functions and self-dual bent functions. Advances in Mathematics of Communications, 2013, 7 (4) : 425-440. doi: 10.3934/amc.2013.7.425

[11]

Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037

[12]

Yanfeng Qi, Chunming Tang, Zhengchun Zhou, Cuiling Fan. Several infinite families of p-ary weakly regular bent functions. Advances in Mathematics of Communications, 2018, 12 (2) : 303-315. doi: 10.3934/amc.2018019

[13]

Natalia Tokareva. On the number of bent functions from iterative constructions: lower bounds and hypotheses. Advances in Mathematics of Communications, 2011, 5 (4) : 609-621. doi: 10.3934/amc.2011.5.609

[14]

Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017

[15]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[16]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[17]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[18]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[19]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[20]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (11)
  • HTML views (8)
  • Cited by (0)

Other articles
by authors

[Back to Top]