February  2017, 11(1): 151-159. doi: 10.3934/amc.2017009

Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques

Provincial Key Laboratory of Information Coding and Transmission, Institute of Mobile Communications, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

Received  July 2015 Published  February 2017

Fund Project: The authors are supported by the National Science Foundation of China (Grant No. 61271244), the Key Grant Project of Chinese Ministry of Education (Grant No. 311031 100), and the Young Innovative Research Team of Sichuan Province (Grant No. 2011JTD0007)

Aperiodic Hamming correlation is an important criterion for evaluating the goodness of frequency hopping (FH) sequence design, while it received little attraction in the literature. In this paper, a construction of FH sequences with optimal aperiodic Hamming correlation by interleaving techniques is presented. Further, a class of one-coincidence FH sequence sets under aperiodic Hamming correlation is proposed. By employing the one-coincidence FH sequence sets, a class of FH sequence sets with optimal aperiodic Hamming correlation is also constructed by interleaving techniques.

Citation: Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009
References:
[1]

The Bluetooth Special Interest Group (SIG), Specification of the Bluetooth Systems-Core, available at http://www.bluetooth.com.Google Scholar

[2]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141. doi: 10.1109/TIT.2004.842708. Google Scholar

[3]

J. H. ChungY. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inform. Theory, 55 (2009), 5783-5791. doi: 10.1109/TIT.2009.2032742. Google Scholar

[4]

C. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610. doi: 10.1109/TIT.2007.899545. Google Scholar

[5]

C. DingY. Yang and X. H. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inform. Theory, 55 (2010), 3605-3612. doi: 10.1109/TIT.2010.2048504. Google Scholar

[6]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745. doi: 10.1109/TIT.2008.926410. Google Scholar

[7]

Y. C. EunS. Y. JinY. P. Hong and H. Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inform. Theory, 50 (2004), 2438-2442. doi: 10.1109/TIT.2004.834792. Google Scholar

[8] P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, London, 1996. Google Scholar
[9]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420. doi: 10.1109/TIT.2004.834783. Google Scholar

[10]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: auto-and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879. doi: 10.1109/TIT.2008.2009856. Google Scholar

[11] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge Univ. Press, Cambridge, 2005. doi: 10.1017/CBO9780511546907. Google Scholar
[12]

G. Gong and H. Y. Song, Two-tuple balance of non-binary sequences with ideal two-level autocorrelation, Discrete Appl. Math., 154 (2006), 2590-2598. doi: 10.1016/j.dam.2006.04.025. Google Scholar

[13]

T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of Coding Theory, Elsevier, Amsterdam, 1998,1767-1853. Google Scholar

[14]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94. Google Scholar

[15]

X. Liu and D. Y. Peng, Sets of frequency hopping sequences under aperiodic Hamming correlation: upper bound and optimal constructions, Adv. Math. Commun., 8 (2014), 359-373. doi: 10.3934/amc.2014.8.359. Google Scholar

[16]

X. LiuD. Y. Peng and H. Y. Han, Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties, Des. Codes Cryptogr., 73 (2014), 167-176. doi: 10.1007/s10623-013-9817-4. Google Scholar

[17]

X. Liu, D. Y. Peng, X. H. Niu and F. Liu, Lower bounds on the aperiodic Hamming correlations of frequency hopping sequences, IEICE Trans. Fundam. Electr. Commun. Comp. Sci. , E96-A (2013), 1445-1450. doi: 10.1587/transfun.E96.A.1445. Google Scholar

[18]

X. H. NiuD. Y. Peng and Z. C. Zhou, Frequency/time hopping sequence sets with optimal partial Hamming correlation properties, Sci. China Ser. F Inf. Sci., 55 (2012), 2207-2215. doi: 10.1007/s11432-012-4620-9. Google Scholar

[19]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto-and cross-correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154. doi: 10.1109/TIT.2004.833362. Google Scholar

[20]

D. Y. Peng, T. Peng, X. H. Tang and X. H. Niu, A class of optimal frequency hopping sequences based upon the theory of power residues, in Proc. 5th Int. Conf. Seq. Appl. , 2008,188-196. doi: 10.1007/978-3-540-85912-3_18. Google Scholar

[21]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, 44 (1998), 1492-1503. doi: 10.1109/18.681324. Google Scholar

[22]

Z. C. ZhouX. H. TangX. H. Niu and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inform. Theory, 58 (2012), 453-458. doi: 10.1109/TIT.2011.2167126. Google Scholar

show all references

References:
[1]

The Bluetooth Special Interest Group (SIG), Specification of the Bluetooth Systems-Core, available at http://www.bluetooth.com.Google Scholar

[2]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141. doi: 10.1109/TIT.2004.842708. Google Scholar

[3]

J. H. ChungY. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inform. Theory, 55 (2009), 5783-5791. doi: 10.1109/TIT.2009.2032742. Google Scholar

[4]

C. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610. doi: 10.1109/TIT.2007.899545. Google Scholar

[5]

C. DingY. Yang and X. H. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inform. Theory, 55 (2010), 3605-3612. doi: 10.1109/TIT.2010.2048504. Google Scholar

[6]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745. doi: 10.1109/TIT.2008.926410. Google Scholar

[7]

Y. C. EunS. Y. JinY. P. Hong and H. Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inform. Theory, 50 (2004), 2438-2442. doi: 10.1109/TIT.2004.834792. Google Scholar

[8] P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, London, 1996. Google Scholar
[9]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420. doi: 10.1109/TIT.2004.834783. Google Scholar

[10]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: auto-and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879. doi: 10.1109/TIT.2008.2009856. Google Scholar

[11] S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge Univ. Press, Cambridge, 2005. doi: 10.1017/CBO9780511546907. Google Scholar
[12]

G. Gong and H. Y. Song, Two-tuple balance of non-binary sequences with ideal two-level autocorrelation, Discrete Appl. Math., 154 (2006), 2590-2598. doi: 10.1016/j.dam.2006.04.025. Google Scholar

[13]

T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of Coding Theory, Elsevier, Amsterdam, 1998,1767-1853. Google Scholar

[14]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94. Google Scholar

[15]

X. Liu and D. Y. Peng, Sets of frequency hopping sequences under aperiodic Hamming correlation: upper bound and optimal constructions, Adv. Math. Commun., 8 (2014), 359-373. doi: 10.3934/amc.2014.8.359. Google Scholar

[16]

X. LiuD. Y. Peng and H. Y. Han, Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties, Des. Codes Cryptogr., 73 (2014), 167-176. doi: 10.1007/s10623-013-9817-4. Google Scholar

[17]

X. Liu, D. Y. Peng, X. H. Niu and F. Liu, Lower bounds on the aperiodic Hamming correlations of frequency hopping sequences, IEICE Trans. Fundam. Electr. Commun. Comp. Sci. , E96-A (2013), 1445-1450. doi: 10.1587/transfun.E96.A.1445. Google Scholar

[18]

X. H. NiuD. Y. Peng and Z. C. Zhou, Frequency/time hopping sequence sets with optimal partial Hamming correlation properties, Sci. China Ser. F Inf. Sci., 55 (2012), 2207-2215. doi: 10.1007/s11432-012-4620-9. Google Scholar

[19]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto-and cross-correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154. doi: 10.1109/TIT.2004.833362. Google Scholar

[20]

D. Y. Peng, T. Peng, X. H. Tang and X. H. Niu, A class of optimal frequency hopping sequences based upon the theory of power residues, in Proc. 5th Int. Conf. Seq. Appl. , 2008,188-196. doi: 10.1007/978-3-540-85912-3_18. Google Scholar

[21]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, 44 (1998), 1492-1503. doi: 10.1109/18.681324. Google Scholar

[22]

Z. C. ZhouX. H. TangX. H. Niu and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inform. Theory, 58 (2012), 453-458. doi: 10.1109/TIT.2011.2167126. Google Scholar

[1]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[2]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[3]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[4]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[5]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[6]

Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024

[7]

Lenny Fukshansky, Ahmad A. Shaar. A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181-188. doi: 10.3934/amc.2018012

[8]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[9]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[10]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[11]

Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847

[12]

Shi Jin, Peng Qi. A hybrid Schrödinger/Gaussian beam solver for quantum barriers and surface hopping. Kinetic & Related Models, 2011, 4 (4) : 1097-1120. doi: 10.3934/krm.2011.4.1097

[13]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

[14]

Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5085-5103. doi: 10.3934/dcds.2018223

[15]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[16]

Gero Friesecke, Felix Henneke, Karl Kunisch. Frequency-sparse optimal quantum control. Mathematical Control & Related Fields, 2018, 8 (1) : 155-176. doi: 10.3934/mcrf.2018007

[17]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[18]

Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322

[19]

Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037

[20]

Sheree L. Arpin, J. M. Cushing. Modeling frequency-dependent selection with an application to cichlid fish. Mathematical Biosciences & Engineering, 2008, 5 (4) : 889-903. doi: 10.3934/mbe.2008.5.889

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]