November  2016, 10(4): 861-870. doi: 10.3934/amc.2016046

Public key protocols over the ring $E_{p}^{(m)}$

1. 

Departament de Matemàtiques, Universitat d'Alacant, Carretera de Sant Vicent del Raspeig, s/n, E-03690 Sant Vicent del Raspeig, Alacant, Spain

2. 

Departamento de Matemáticas, Universidad de Almería, Carretera de Sacramento, s/n, Almería, 04120, Spain

Received  March 2015 Revised  June 2016 Published  November 2016

In this paper we use the nonrepresentable ring $E_{p}^{(m)}$ to introduce public key cryptosystems in noncommutative settings and based on the Semigroup Action Problem and the Decomposition Problem respectively.
Citation: Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046
References:
[1]

I. Anshel, M. Anshel, B. Fisher and D. Goldfeld, New key agreement protocols in braid group cryptography,, in Topics Crypt. - CT-RSA 2001 (ed. D. Naccache), (2001), 13. doi: 10.1007/3-540-45353-9_2. Google Scholar

[2]

I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptography,, Math. Res. Lett., 6 (1999), 1. doi: 10.4310/MRL.1999.v6.n3.a3. Google Scholar

[3]

G. M. Bergman, Some examples in PI ring theory,, Israel J. Math., 18 (1974), 257. Google Scholar

[4]

J.-J. Climent, F. Ferrández, J.-F. Vicent and A. Zamora, A nonlinear elliptic curve cryptosystem based on matrices,, Appl. Math. Comput., 174 (2006), 150. doi: 10.1016/j.amc.2005.03.032. Google Scholar

[5]

J.-J. Climent, P. R. Navarro and L. Tortosa, Key exchange protocols over noncommutative rings. The case of End$(\mathbb Z_p\times\mathbb Z_{p^2})$,, Proc. 11th Int. Conf. Comput. Math. Methods Sci. Engin. (CMMSE 2011), (2011), 357. doi: 10.1080/00207160.2012.696105. Google Scholar

[6]

J.-J. Climent, P. R. Navarro and L. Tortosa, On the arithmetic of the endomorphisms ring End $(\mathbb Z_p\times\mathbb Z_{p^2})$,, Appl. Algebr. Eng, 22 (2011), 91. doi: 10.1007/s00200-011-0138-4. Google Scholar

[7]

J.-J. Climent, P. R. Navarro and L. Tortosa, Key exchange protocols over noncommutative rings. The case of End $(\mathbb Z_p\times\mathbb Z_{p^2})$,, Int. J. Comput. Math., 89(13-14) (2012), 13. doi: 10.1080/00207160.2012.696105. Google Scholar

[8]

J.-J. Climent, P. R. Navarro and L. Tortosa, An extension of the noncommutative Bergman's ring with a large number of noninvertible elements,, Appl. Algebr. Eng. Comm., 25 (2014), 347. doi: 10.1007/s00200-014-0231-6. Google Scholar

[9]

W. D. Diffie and M. E. Hellman, New Directions in Cryptography,, IEEE Trans. Inform. Theory, 22 (1976), 644. Google Scholar

[10]

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms,, IEEE Trans. Inform. Theory, 31 (1985), 469. doi: 10.1109/TIT.1985.1057074. Google Scholar

[11]

A. A. Kamal and A. M. Youssef, Cryptanalysis of a key exchange protocol based on the endomorphisms ring End $(\mathbb Z_p\times\mathbb Z_{p^2})$,, Appl. Algebr. Eng. Comm., 23) (2012), 143. doi: 10.1007/s00200-012-0170-z. Google Scholar

[12]

K. H. Ko, J. W. Lee and T. Thomas, Towards generating secure keys for braid cryptography,, Design. Code. Cryptogr., 45 (2007), 317. doi: 10.1007/s10623-007-9123-0. Google Scholar

[13]

K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J.-S. Kang and C. Park, New public-key cryptosystem using braid groups,, Adv. Crypt. - CRYPTO 2000 (ed. M. Bellare), (2000), 166. doi: 10.1007/3-540-44598-6_10. Google Scholar

[14]

A. Mahalanobis, A simple generalization of the ElGamal cryptosystem to non-abelian groups,, Commun. Algebra, 36 (2008), 3878. doi: 10.1080/00927870802160883. Google Scholar

[15]

A. Mahalanobis, The Diffie-Hellman key exchange and non-abelian nilpotent groups,, Israel J. Math., 165 (2008), 161. doi: 10.1007/s11856-008-1008-z. Google Scholar

[16]

A. Mahalanobis, Are matrices useful in public-key cryptography?,, Int. Math. Forum, 8 (2013), 1939. doi: 10.12988/imf.2013.310187. Google Scholar

[17]

A. Mahalanobis, The MOR cryptosystem and finite $p$-groups,, in Algorithmic Problems of Group Theory, (2015), 81. doi: 10.1090/conm/633/12653. Google Scholar

[18]

G. Maze, C. Monico and J. Rosenthal, Public key cryptography based on semigroup actions,, Adv. Math. Commun., 1 (2007), 489. doi: 10.3934/amc.2007.1.489. Google Scholar

[19]

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography,, CRC Press, (1996). Google Scholar

[20]

A. G. Myasnikov, V. Shpilrain and A. Ushakov, Group-Based Cryptography,, Birkhäuser Verlag, (2008). Google Scholar

[21]

S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee and C. Park, New public key cryptosystem using finite non abelian groups,, in Adv. Crypt. - CRYPTO 2001 (ed. J. Kilian), (2001), 470. doi: 10.1007/3-540-44647-8_28. Google Scholar

[22]

R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,, Commun. ACM, 21 (1978), 120. doi: 10.1145/359340.359342. Google Scholar

[23]

E. Sakalauskas and T. Burba, Basic semigroup primitive for cryptographic session key exchange protocol (SKEP),, Inf. Technol. Control, 28 (2003), 76. Google Scholar

[24]

V. Shpilrain and A. Ushakov, A new key exchange protocol based on the decomposition problem,, Contemp. Math., 418 (2006), 161. doi: 10.1090/conm/418/07954. Google Scholar

[25]

V. Shpilrain and G. Zapata, Combinatorial group theory and public key cryptography,, Appl. Algebr. Eng. Comm., 17 (2006), 291. doi: 10.1007/s00200-006-0006-9. Google Scholar

[26]

V. M. Sidelnikov, M. A. Cherepnev and V. V. Yashchenko, Systems of open distribution of keys on the basis of noncommutative semigroups,, Russ. Ac. Sc. Doklady Math., 48 (1994), 384. Google Scholar

[27]

E. Stickel, A new method for exchanging secret keys,, in Proc. 3rd Int. Conf. Inform. Techn. Appl. (ICITA'05), (2005), 426. Google Scholar

[28]

D. R. Stinson, Cryptography. Theory and Practice,, CRC Press, (1995). Google Scholar

[29]

T. Thomas and A. K. Lal, A zero-knowledge undeniable signature scheme in non-abelian group setting,, Int. J. Netw. Secur., 6 (2008), 265. Google Scholar

[30]

H. Yoo, S. Hong, S. Lee, J. Lim, O. Yi and M. Sung, A proposal of a new public key cryptosystem using matrices over a ring,, in Information Security and Privacy, (2000), 41. Google Scholar

show all references

References:
[1]

I. Anshel, M. Anshel, B. Fisher and D. Goldfeld, New key agreement protocols in braid group cryptography,, in Topics Crypt. - CT-RSA 2001 (ed. D. Naccache), (2001), 13. doi: 10.1007/3-540-45353-9_2. Google Scholar

[2]

I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptography,, Math. Res. Lett., 6 (1999), 1. doi: 10.4310/MRL.1999.v6.n3.a3. Google Scholar

[3]

G. M. Bergman, Some examples in PI ring theory,, Israel J. Math., 18 (1974), 257. Google Scholar

[4]

J.-J. Climent, F. Ferrández, J.-F. Vicent and A. Zamora, A nonlinear elliptic curve cryptosystem based on matrices,, Appl. Math. Comput., 174 (2006), 150. doi: 10.1016/j.amc.2005.03.032. Google Scholar

[5]

J.-J. Climent, P. R. Navarro and L. Tortosa, Key exchange protocols over noncommutative rings. The case of End$(\mathbb Z_p\times\mathbb Z_{p^2})$,, Proc. 11th Int. Conf. Comput. Math. Methods Sci. Engin. (CMMSE 2011), (2011), 357. doi: 10.1080/00207160.2012.696105. Google Scholar

[6]

J.-J. Climent, P. R. Navarro and L. Tortosa, On the arithmetic of the endomorphisms ring End $(\mathbb Z_p\times\mathbb Z_{p^2})$,, Appl. Algebr. Eng, 22 (2011), 91. doi: 10.1007/s00200-011-0138-4. Google Scholar

[7]

J.-J. Climent, P. R. Navarro and L. Tortosa, Key exchange protocols over noncommutative rings. The case of End $(\mathbb Z_p\times\mathbb Z_{p^2})$,, Int. J. Comput. Math., 89(13-14) (2012), 13. doi: 10.1080/00207160.2012.696105. Google Scholar

[8]

J.-J. Climent, P. R. Navarro and L. Tortosa, An extension of the noncommutative Bergman's ring with a large number of noninvertible elements,, Appl. Algebr. Eng. Comm., 25 (2014), 347. doi: 10.1007/s00200-014-0231-6. Google Scholar

[9]

W. D. Diffie and M. E. Hellman, New Directions in Cryptography,, IEEE Trans. Inform. Theory, 22 (1976), 644. Google Scholar

[10]

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms,, IEEE Trans. Inform. Theory, 31 (1985), 469. doi: 10.1109/TIT.1985.1057074. Google Scholar

[11]

A. A. Kamal and A. M. Youssef, Cryptanalysis of a key exchange protocol based on the endomorphisms ring End $(\mathbb Z_p\times\mathbb Z_{p^2})$,, Appl. Algebr. Eng. Comm., 23) (2012), 143. doi: 10.1007/s00200-012-0170-z. Google Scholar

[12]

K. H. Ko, J. W. Lee and T. Thomas, Towards generating secure keys for braid cryptography,, Design. Code. Cryptogr., 45 (2007), 317. doi: 10.1007/s10623-007-9123-0. Google Scholar

[13]

K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J.-S. Kang and C. Park, New public-key cryptosystem using braid groups,, Adv. Crypt. - CRYPTO 2000 (ed. M. Bellare), (2000), 166. doi: 10.1007/3-540-44598-6_10. Google Scholar

[14]

A. Mahalanobis, A simple generalization of the ElGamal cryptosystem to non-abelian groups,, Commun. Algebra, 36 (2008), 3878. doi: 10.1080/00927870802160883. Google Scholar

[15]

A. Mahalanobis, The Diffie-Hellman key exchange and non-abelian nilpotent groups,, Israel J. Math., 165 (2008), 161. doi: 10.1007/s11856-008-1008-z. Google Scholar

[16]

A. Mahalanobis, Are matrices useful in public-key cryptography?,, Int. Math. Forum, 8 (2013), 1939. doi: 10.12988/imf.2013.310187. Google Scholar

[17]

A. Mahalanobis, The MOR cryptosystem and finite $p$-groups,, in Algorithmic Problems of Group Theory, (2015), 81. doi: 10.1090/conm/633/12653. Google Scholar

[18]

G. Maze, C. Monico and J. Rosenthal, Public key cryptography based on semigroup actions,, Adv. Math. Commun., 1 (2007), 489. doi: 10.3934/amc.2007.1.489. Google Scholar

[19]

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography,, CRC Press, (1996). Google Scholar

[20]

A. G. Myasnikov, V. Shpilrain and A. Ushakov, Group-Based Cryptography,, Birkhäuser Verlag, (2008). Google Scholar

[21]

S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee and C. Park, New public key cryptosystem using finite non abelian groups,, in Adv. Crypt. - CRYPTO 2001 (ed. J. Kilian), (2001), 470. doi: 10.1007/3-540-44647-8_28. Google Scholar

[22]

R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,, Commun. ACM, 21 (1978), 120. doi: 10.1145/359340.359342. Google Scholar

[23]

E. Sakalauskas and T. Burba, Basic semigroup primitive for cryptographic session key exchange protocol (SKEP),, Inf. Technol. Control, 28 (2003), 76. Google Scholar

[24]

V. Shpilrain and A. Ushakov, A new key exchange protocol based on the decomposition problem,, Contemp. Math., 418 (2006), 161. doi: 10.1090/conm/418/07954. Google Scholar

[25]

V. Shpilrain and G. Zapata, Combinatorial group theory and public key cryptography,, Appl. Algebr. Eng. Comm., 17 (2006), 291. doi: 10.1007/s00200-006-0006-9. Google Scholar

[26]

V. M. Sidelnikov, M. A. Cherepnev and V. V. Yashchenko, Systems of open distribution of keys on the basis of noncommutative semigroups,, Russ. Ac. Sc. Doklady Math., 48 (1994), 384. Google Scholar

[27]

E. Stickel, A new method for exchanging secret keys,, in Proc. 3rd Int. Conf. Inform. Techn. Appl. (ICITA'05), (2005), 426. Google Scholar

[28]

D. R. Stinson, Cryptography. Theory and Practice,, CRC Press, (1995). Google Scholar

[29]

T. Thomas and A. K. Lal, A zero-knowledge undeniable signature scheme in non-abelian group setting,, Int. J. Netw. Secur., 6 (2008), 265. Google Scholar

[30]

H. Yoo, S. Hong, S. Lee, J. Lim, O. Yi and M. Sung, A proposal of a new public key cryptosystem using matrices over a ring,, in Information Security and Privacy, (2000), 41. Google Scholar

[1]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[2]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[3]

Rainer Steinwandt, Adriana Suárez Corona. Cryptanalysis of a 2-party key establishment based on a semigroup action problem. Advances in Mathematics of Communications, 2011, 5 (1) : 87-92. doi: 10.3934/amc.2011.5.87

[4]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[5]

Viorel Nitica, Andrei Török. On a semigroup problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2365-2377. doi: 10.3934/dcdss.2019148

[6]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[7]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[8]

Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023

[9]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[10]

Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035

[11]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[12]

J. I. Díaz, J. F. Padial. On a free-boundary problem modeling the action of a limiter on a plasma. Conference Publications, 2007, 2007 (Special) : 313-322. doi: 10.3934/proc.2007.2007.313

[13]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[14]

Yifan Xu. Algorithms by layer-decomposition for the subgraph recognition problem with attributes. Journal of Industrial & Management Optimization, 2005, 1 (3) : 337-343. doi: 10.3934/jimo.2005.1.337

[15]

Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 201-210. doi: 10.3934/dcds.2004.10.201

[16]

Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759

[17]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[18]

Ben Schweizer, Marco Veneroni. The needle problem approach to non-periodic homogenization. Networks & Heterogeneous Media, 2011, 6 (4) : 755-781. doi: 10.3934/nhm.2011.6.755

[19]

J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic & Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345

[20]

Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]