# American Institute of Mathematical Sciences

November  2016, 10(4): 797-809. doi: 10.3934/amc.2016041

## Modelling the shrinking generator in terms of linear CA

 1 Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas (UNICAMP), R. Sérgio Buarque de Holanda, 651, Cidade Universitária, Campinas - SP, 13083-859 2 Instituto de Tecnologías Físicas y de la Información, Consejo Superior de Investigaciones Científicas, C/Serrano 144, 28006, Madrid, Spain

Received  December 2014 Revised  June 2016 Published  November 2016

This work analyses the output sequence from a cryptographic non-linear generator, the so-called shrinking generator. This sequence, known as the shrunken sequence, can be built by interleaving a unique PN-sequence whose characteristic polynomial serves as basis for the shrunken sequence's characteristic polynomial. In addition, the shrunken sequence can be also generated from a linear model based on cellular automata. The cellular automata here proposed generate a family of sequences with the same properties, period and characteristic polynomial, as those of the shrunken sequence. Moreover, such sequences appear several times along the cellular automata shifted a fixed number. The use of discrete logarithms allows the computation of such a number. The linearity of these cellular automata can be advantageously employed to launch a cryptanalysis against the shrinking generator and recover its output sequence.
Citation: Sara D. Cardell, Amparo Fúster-Sabater. Modelling the shrinking generator in terms of linear CA. Advances in Mathematics of Communications, 2016, 10 (4) : 797-809. doi: 10.3934/amc.2016041
##### References:

show all references

##### References:
 [1] T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 [2] Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks & Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 [3] Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 [4] Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084 [5] Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229 [6] Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 [7] Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095 [8] Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327 [9] Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419 [10] Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703 [11] Marcela Mejía, J. Urías. An asymptotically perfect pseudorandom generator. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 115-126. doi: 10.3934/dcds.2001.7.115 [12] Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050 [13] Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111 [14] I-Lin Wang, Ju-Chun Lin. A compaction scheme and generator for distribution networks. Journal of Industrial & Management Optimization, 2016, 12 (1) : 117-140. doi: 10.3934/jimo.2016.12.117 [15] Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007 [16] Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control & Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489 [17] Piotr Jaworski, Marcin Pitera. The 20-60-20 rule. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1149-1166. doi: 10.3934/dcdsb.2016.21.1149 [18] Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911 [19] Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524 [20] Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

2018 Impact Factor: 0.879