November  2016, 10(4): 765-795. doi: 10.3934/amc.2016040

Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$

1. 

IRMAR (UMR 6625), Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes

Received  December 2014 Revised  February 2016 Published  November 2016

The aim of this text is to construct and to enumerate self-dual $\theta$-cyclic and $\theta$-negacyclic codes over $\mathbb{F}_{p^2}$ where $p$ is a prime number and $\theta$ is the Frobenius automorphism.
Citation: Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040
References:
[1]

G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field,, Finite Fields Appl., 19 (2013), 39. doi: 10.1016/j.ffa.2012.10.003. Google Scholar

[2]

D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes,, Appl. Algebra Engin. Commun. Comp., 18 (2007), 379. doi: 10.1007/s00200-007-0043-z. Google Scholar

[3]

D. Boucher and F. Ulmer, Self-dual skew codes and factorization of skew polynomials,, J. Symb. Comp., 60 (2014), 47. doi: 10.1016/j.jsc.2013.10.003. Google Scholar

[4]

X. Caruso and J. Leborgne, Some algorithms for skew polynomials over finite fields,, preprint, (). Google Scholar

[5]

H. Q. Dinh, Repeated-root constacyclic codes of length $2 p^s$,, Finite Fields Appl., 18 (2012), 133. doi: 10.1016/j.ffa.2011.07.003. Google Scholar

[6]

J. von zur Gathen and J. Gerhard, Modern Computer Algebra,, Cambridge Univ. Press, (2013). doi: 10.1017/CBO9781139856065. Google Scholar

[7]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields,, J. Symb. Comput., 26 (1998), 463. doi: 10.1006/jsco.1998.0224. Google Scholar

[8]

K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields,, in 2012 IEEE Int. Symp. Inform. Theory Proc., (2012), 2904. Google Scholar

[9]

S. Han, J.-L. Kim, H. Lee and Y. Lee, Construction of quasi-cyclic self-dual codes,, Finite Fields Appl., 18 (2012), 613. doi: 10.1016/j.ffa.2011.12.006. Google Scholar

[10]

N. Jacobson, The Theory of Rings,, Amer. Math. Soc., (1943). Google Scholar

[11]

S. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,, IEEE Trans. Inform. Theory, 57 (2011), 2243. doi: 10.1109/TIT.2010.2092415. Google Scholar

[12]

X. Kai and S. Zhu, On cyclic self-dual codes,, Appl. Algebra Engin. Commun. Comp., 19 (2008), 509. doi: 10.1007/s00200-008-0086-9. Google Scholar

[13]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997). Google Scholar

[14]

S. Ling, H. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes IV: Repeated roots Chain rings,, Des. Codes Crypt., 38 (2006), 337. doi: 10.1007/s10623-005-1431-7. Google Scholar

[15]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes I. Finite fields,, IEEE Trans. Inform. Theory, 47 (2001), 2751. doi: 10.1109/18.959257. Google Scholar

[16]

R. W. K. Odoni, On additive polynomials over a finite field,, Proc. Edinburgh Math. Soc., 42 (1999), 1. doi: 10.1017/S0013091500019970. Google Scholar

[17]

O. Ore, Theory of Non-Commutative Polynomials,, Ann. Math., 34 (1933), 480. doi: 10.2307/1968173. Google Scholar

[18]

A. Sahni and P. T. Sehgal, Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields,, Adv. Math. Commun., 9 (2015), 437. doi: 10.3934/amc.2015.9.437. Google Scholar

[19]

I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length,, Int. J. Inf. Coding Theory, 2 (2011), 10. doi: 10.1504/IJICOT.2011.044674. Google Scholar

[20]

N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes,, IEEE Trans. Inform. Theory, 29 (1983), 364. doi: 10.1109/TIT.1983.1056682. Google Scholar

show all references

References:
[1]

G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field,, Finite Fields Appl., 19 (2013), 39. doi: 10.1016/j.ffa.2012.10.003. Google Scholar

[2]

D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes,, Appl. Algebra Engin. Commun. Comp., 18 (2007), 379. doi: 10.1007/s00200-007-0043-z. Google Scholar

[3]

D. Boucher and F. Ulmer, Self-dual skew codes and factorization of skew polynomials,, J. Symb. Comp., 60 (2014), 47. doi: 10.1016/j.jsc.2013.10.003. Google Scholar

[4]

X. Caruso and J. Leborgne, Some algorithms for skew polynomials over finite fields,, preprint, (). Google Scholar

[5]

H. Q. Dinh, Repeated-root constacyclic codes of length $2 p^s$,, Finite Fields Appl., 18 (2012), 133. doi: 10.1016/j.ffa.2011.07.003. Google Scholar

[6]

J. von zur Gathen and J. Gerhard, Modern Computer Algebra,, Cambridge Univ. Press, (2013). doi: 10.1017/CBO9781139856065. Google Scholar

[7]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields,, J. Symb. Comput., 26 (1998), 463. doi: 10.1006/jsco.1998.0224. Google Scholar

[8]

K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields,, in 2012 IEEE Int. Symp. Inform. Theory Proc., (2012), 2904. Google Scholar

[9]

S. Han, J.-L. Kim, H. Lee and Y. Lee, Construction of quasi-cyclic self-dual codes,, Finite Fields Appl., 18 (2012), 613. doi: 10.1016/j.ffa.2011.12.006. Google Scholar

[10]

N. Jacobson, The Theory of Rings,, Amer. Math. Soc., (1943). Google Scholar

[11]

S. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,, IEEE Trans. Inform. Theory, 57 (2011), 2243. doi: 10.1109/TIT.2010.2092415. Google Scholar

[12]

X. Kai and S. Zhu, On cyclic self-dual codes,, Appl. Algebra Engin. Commun. Comp., 19 (2008), 509. doi: 10.1007/s00200-008-0086-9. Google Scholar

[13]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997). Google Scholar

[14]

S. Ling, H. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes IV: Repeated roots Chain rings,, Des. Codes Crypt., 38 (2006), 337. doi: 10.1007/s10623-005-1431-7. Google Scholar

[15]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes I. Finite fields,, IEEE Trans. Inform. Theory, 47 (2001), 2751. doi: 10.1109/18.959257. Google Scholar

[16]

R. W. K. Odoni, On additive polynomials over a finite field,, Proc. Edinburgh Math. Soc., 42 (1999), 1. doi: 10.1017/S0013091500019970. Google Scholar

[17]

O. Ore, Theory of Non-Commutative Polynomials,, Ann. Math., 34 (1933), 480. doi: 10.2307/1968173. Google Scholar

[18]

A. Sahni and P. T. Sehgal, Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields,, Adv. Math. Commun., 9 (2015), 437. doi: 10.3934/amc.2015.9.437. Google Scholar

[19]

I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length,, Int. J. Inf. Coding Theory, 2 (2011), 10. doi: 10.1504/IJICOT.2011.044674. Google Scholar

[20]

N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes,, IEEE Trans. Inform. Theory, 29 (1983), 364. doi: 10.1109/TIT.1983.1056682. Google Scholar

[1]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[2]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[3]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[4]

Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901

[5]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[6]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[7]

Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175

[8]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[9]

Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035

[10]

Nuh Aydin, Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Esengül Saltürk. Skew constacyclic codes over the local Frobenius non-chain rings of order 16. Advances in Mathematics of Communications, 2020, 14 (1) : 53-67. doi: 10.3934/amc.2020005

[11]

Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

[12]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[13]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[14]

Fatma-Zohra Benahmed, Kenza Guenda, Aicha Batoul, Thomas Aaron Gulliver. Some new constructions of isodual and LCD codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 281-296. doi: 10.3934/amc.2019019

[15]

Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99

[16]

Anderson Silva, C. Polcino Milies. Cyclic codes of length $ 2p^n $ over finite chain rings. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020017

[17]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[18]

Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046

[19]

Xia Li, Feng Cheng, Chunming Tang, Zhengchun Zhou. Some classes of LCD codes and self-orthogonal codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 267-280. doi: 10.3934/amc.2019018

[20]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]