August  2016, 10(3): 547-554. doi: 10.3934/amc.2016025

On the existence of Hadamard difference sets in groups of order 400

1. 

Faculty of Science, University of Split, Rudjera Boškovića 33, Split, 21000, Croatia, Croatia

Received  May 2015 Revised  June 2016 Published  August 2016

This paper concerns the problem of the existence of Hadamard difference sets in nonabelian groups of order 400. By introducing a new construction method, we construct new difference sets in 20 groups. We survey non-existence results, verifying non-existence in 45 groups.
Citation: Joško Mandić, Tanja Vučičić. On the existence of Hadamard difference sets in groups of order 400. Advances in Mathematics of Communications, 2016, 10 (3) : 547-554. doi: 10.3934/amc.2016025
References:
[1]

J. Alexander, R. Balasubramanian, J. Martin, K. Monahan, H. Pollatsek and A. Sen, Ruling out $(160,54,18)$ difference sets in some nonabelian groups,, J. Combin. Des., 8 (2000), 221. doi: 10.1002/1520-6610(2000)8:4<221::AID-JCD1>3.3.CO;2-Y. Google Scholar

[2]

T. Beth, D. Jungnickel and H. Lenz, Design Theory,, Cambridge Univ. Press, (1999). Google Scholar

[3]

W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions,, edition 2.16, (2010). Google Scholar

[4]

P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs,, Discrete Math., 118 (1993), 33. doi: 10.1016/0012-365X(93)90051-T. Google Scholar

[5]

J. A. Davis and J. Jedwab, A survey of Hadamard difference sets,, in Groups, (1996), 145. Google Scholar

[6]

J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets,, J. Combin. Theory Ser. A, 40 (1985), 9. doi: 10.1016/0097-3165(85)90043-3. Google Scholar

[7]

J. F. Dillon, Some REALLY beautiful Hadamard matrices,, Crypt. Commun., (2010), 271. doi: 10.1007/s12095-010-0031-1. Google Scholar

[8]

The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4,, available online at , (). Google Scholar

[9]

A. Golemac and T. Vučičić, New difference sets in nonabelian groups of order $100$,, J. Combin. Des., 9 (2001), 424. doi: 10.1002/jcd.1021. Google Scholar

[10]

E. H. Moore and H. S. Pollatsek, Difference Sets: Connecting Algebra, Combinatorics and Geometry,, AMS, (2013). doi: 10.1090/stml/067. Google Scholar

[11]

K. W. Smith, Nonabelian Hadamard difference sets,, J. Combin. Theory Ser. A, 70 (1995), 144. doi: 10.1016/0097-3165(95)90084-5. Google Scholar

[12]

T. Vučičić, New symmetric designs and nonabelian difference sets with parameters $(100, 45, 20)$,, J. Combin. Des., 8 (2000), 291. doi: 10.1002/1520-6610(2000)8:4<291::AID-JCD6>3.0.CO;2-L. Google Scholar

[13]

=, (). Google Scholar

show all references

References:
[1]

J. Alexander, R. Balasubramanian, J. Martin, K. Monahan, H. Pollatsek and A. Sen, Ruling out $(160,54,18)$ difference sets in some nonabelian groups,, J. Combin. Des., 8 (2000), 221. doi: 10.1002/1520-6610(2000)8:4<221::AID-JCD1>3.3.CO;2-Y. Google Scholar

[2]

T. Beth, D. Jungnickel and H. Lenz, Design Theory,, Cambridge Univ. Press, (1999). Google Scholar

[3]

W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions,, edition 2.16, (2010). Google Scholar

[4]

P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs,, Discrete Math., 118 (1993), 33. doi: 10.1016/0012-365X(93)90051-T. Google Scholar

[5]

J. A. Davis and J. Jedwab, A survey of Hadamard difference sets,, in Groups, (1996), 145. Google Scholar

[6]

J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets,, J. Combin. Theory Ser. A, 40 (1985), 9. doi: 10.1016/0097-3165(85)90043-3. Google Scholar

[7]

J. F. Dillon, Some REALLY beautiful Hadamard matrices,, Crypt. Commun., (2010), 271. doi: 10.1007/s12095-010-0031-1. Google Scholar

[8]

The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4,, available online at , (). Google Scholar

[9]

A. Golemac and T. Vučičić, New difference sets in nonabelian groups of order $100$,, J. Combin. Des., 9 (2001), 424. doi: 10.1002/jcd.1021. Google Scholar

[10]

E. H. Moore and H. S. Pollatsek, Difference Sets: Connecting Algebra, Combinatorics and Geometry,, AMS, (2013). doi: 10.1090/stml/067. Google Scholar

[11]

K. W. Smith, Nonabelian Hadamard difference sets,, J. Combin. Theory Ser. A, 70 (1995), 144. doi: 10.1016/0097-3165(95)90084-5. Google Scholar

[12]

T. Vučičić, New symmetric designs and nonabelian difference sets with parameters $(100, 45, 20)$,, J. Combin. Des., 8 (2000), 291. doi: 10.1002/1520-6610(2000)8:4<291::AID-JCD6>3.0.CO;2-L. Google Scholar

[13]

=, (). Google Scholar

[1]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[2]

Tian Ma, Shouhong Wang. Block structure and block stability of two-dimensional incompressible flows. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 169-184. doi: 10.3934/dcdsb.2006.6.169

[3]

Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979

[4]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[5]

Karol Mikula, Mariana Remešíková, Peter Novysedlák. Truss structure design using a length-oriented surface remeshing technique. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 933-951. doi: 10.3934/dcdss.2015.8.933

[6]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115

[7]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[8]

Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607

[9]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[10]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[11]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[12]

Sergiĭ Kolyada, Mykola Matviichuk. On extensions of transitive maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 767-777. doi: 10.3934/dcds.2011.30.767

[13]

John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743

[14]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[15]

Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291

[16]

Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651

[17]

Shengzhi Zhu, Shaobo Gan, Lan Wen. Indices of singularities of robustly transitive sets. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 945-957. doi: 10.3934/dcds.2008.21.945

[18]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[19]

Cheng Cheng, Shaobo Gan, Yi Shi. A robustly transitive diffeomorphism of Kan's type. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 867-888. doi: 10.3934/dcds.2018037

[20]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]