• Previous Article
    Codes over local rings of order 16 and binary codes
  • AMC Home
  • This Issue
  • Next Article
    Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes
May  2016, 10(2): 367-377. doi: 10.3934/amc.2016011

The geometric structure of relative one-weight codes

1. 

Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, China

2. 

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, Hubei 430062, China

Received  July 2014 Revised  August 2015 Published  April 2016

The geometric structure of any relative one-weight code is determined, and by using this geometric structure, the support weight distribution of subcodes of any relative one-weight code is presented. An application of relative one-weight codes to the wire-tap channel of type II with multiple users is given, and certain kinds of relative one-weight codes all of whose nonzero codewords are minimal are determined.
Citation: Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011
References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes,, IEEE Trans. Inf. Theory, 44 (1998), 2010. doi: 10.1109/18.705584. Google Scholar

[2]

W. D. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4,, IEEE Trans. Inf. Theory, 42 (1996), 2265. doi: 10.1109/18.556621. Google Scholar

[3]

Z. H. Liu and W. D. Chen, Notes on the value function,, Des. Codes Crypt., 54 (2010), 11. doi: 10.1007/s10623-009-9305-z. Google Scholar

[4]

Z. H. Liu, W. D. Chen, Z. M. Sun and X. Y. Zeng, Further results on support weights of certain subcodes,, Des. Codes Crypt., 61 (2011), 119. doi: 10.1007/s10623-010-9442-4. Google Scholar

[5]

Z. H. Liu and X. W. Wu, On relative constant-weight codes,, Des. Codes Crypt., 75 (2015), 127. doi: 10.1007/s10623-013-9896-2. Google Scholar

[6]

Y. Luo, C. Mitrpant, A. J. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type II,, IEEE Trans. Inf. Theory, 51 (2005), 1222. doi: 10.1109/TIT.2004.842763. Google Scholar

[7]

F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes,, North Holland, (1977). Google Scholar

[8]

V. K. Wei, Generalized Hamming weight for linear codes,, IEEE Trans. Inf. Theory, 37 (1991), 1412. doi: 10.1109/18.133259. Google Scholar

[9]

J. A. Wood, Relative one-weight linear codes,, Des. Codes Crypt., 72 (2014), 331. doi: 10.1007/s10623-012-9769-0. Google Scholar

[10]

J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes,, IEEE Trans. Inf. Theory, 52 (2006), 206. doi: 10.1109/TIT.2005.860412. Google Scholar

show all references

References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes,, IEEE Trans. Inf. Theory, 44 (1998), 2010. doi: 10.1109/18.705584. Google Scholar

[2]

W. D. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4,, IEEE Trans. Inf. Theory, 42 (1996), 2265. doi: 10.1109/18.556621. Google Scholar

[3]

Z. H. Liu and W. D. Chen, Notes on the value function,, Des. Codes Crypt., 54 (2010), 11. doi: 10.1007/s10623-009-9305-z. Google Scholar

[4]

Z. H. Liu, W. D. Chen, Z. M. Sun and X. Y. Zeng, Further results on support weights of certain subcodes,, Des. Codes Crypt., 61 (2011), 119. doi: 10.1007/s10623-010-9442-4. Google Scholar

[5]

Z. H. Liu and X. W. Wu, On relative constant-weight codes,, Des. Codes Crypt., 75 (2015), 127. doi: 10.1007/s10623-013-9896-2. Google Scholar

[6]

Y. Luo, C. Mitrpant, A. J. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type II,, IEEE Trans. Inf. Theory, 51 (2005), 1222. doi: 10.1109/TIT.2004.842763. Google Scholar

[7]

F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes,, North Holland, (1977). Google Scholar

[8]

V. K. Wei, Generalized Hamming weight for linear codes,, IEEE Trans. Inf. Theory, 37 (1991), 1412. doi: 10.1109/18.133259. Google Scholar

[9]

J. A. Wood, Relative one-weight linear codes,, Des. Codes Crypt., 72 (2014), 331. doi: 10.1007/s10623-012-9769-0. Google Scholar

[10]

J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes,, IEEE Trans. Inf. Theory, 52 (2006), 206. doi: 10.1109/TIT.2005.860412. Google Scholar

[1]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[2]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[3]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[4]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[5]

Jisang Yoo. Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states. Journal of Modern Dynamics, 2018, 13: 271-284. doi: 10.3934/jmd.2018021

[6]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[7]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[8]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[9]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[10]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[11]

Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493

[12]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[13]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[14]

Diana M. Thomas, Ashley Ciesla, James A. Levine, John G. Stevens, Corby K. Martin. A mathematical model of weight change with adaptation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 873-887. doi: 10.3934/mbe.2009.6.873

[15]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[16]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[17]

Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139

[18]

Chenxi Wu. The relative cohomology of abelian covers of the flat pillowcase. Journal of Modern Dynamics, 2015, 9: 123-140. doi: 10.3934/jmd.2015.9.123

[19]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[20]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]