May  2016, 10(2): 209-220. doi: 10.3934/amc.2016001

On codes over FFN$(1,q)$-projective varieties

1. 

Academia de Matemáticas, Universidad Autónoma de la Ciudad de México, 09790, México, D. F., Mexico

2. 

Departamento de Matemáticas, Universidad Autónoma Metropolitana-I, 09340, México, D. F., Mexico

Received  March 2013 Revised  April 2015 Published  April 2016

For projective varieties defined over a finite field ${\mathbb F}_q$ we show that they contain a unique subvariety that satisfies the Finite Field Nullstellensatz property [1,2], for homogeneous linear polynomials over ${\mathbb F}_q$. Using these subvarieties we construct linear codes and estimate some of their parameters.
Citation: Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001
References:
[1]

E. Ballico and A. Cossidente, On the finite field nullstellensatz,, Austr. J. Combin., 21 (2000), 57.

[2]

E. Ballico and A. Cossidente, Finite field nullstellensatz and Grassmannians,, Austr. J. Combin., 24 (2001), 313.

[3]

R. Bernt, An Introduction to Symplectic Geometry,, Amer. Math. Soc., (1998).

[4]

J. Buczynski, Properties of Legendrian subvarieties of projective space,, Geometria Dedicata, 118 (2006), 87. doi: 10.1007/s10711-005-9027-y.

[5]

J. Carrillo-Pacheco and F. Zaldivar, On Lagrangian-Grassmannian codes,, Des. Codes Crypt., 60 (2011), 291. doi: 10.1007/s10623-010-9434-4.

[6]

H. Chen, On the minimum distance of Schubert codes,, IEEE Trans. Inf. Theory, 46 (2000), 1535. doi: 10.1109/18.850689.

[7]

W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry,, Cambridge Univ. Press, (1997).

[8]

S. R. Ghorpade and G. Lachaud, Higher weights of Grassmann codes,, in Coding Theory, (2000), 122.

[9]

S. R. Ghorpade and G. Lachaud, Hyperplane sections of Grassmannians and the number of MDS linear codes,, Finite Fields Appl., 7 (2001), 468. doi: 10.1006/ffta.2000.0299.

[10]

S. R. Ghorpade, A. R. Patil and H. K. Pillai, Decomposable subspaces, linear sections of Grassmann varieties, and higher weights of Grassmann codes,, Finite Fields Appl., 15 (2009), 54. doi: 10.1016/j.ffa.2008.08.001.

[11]

S. R. Ghorpade, A. R. Patil and H. K. Pillai, Subclose families, threshold graphs, and the weight hierarchy of Grassmann and Schubert codes,, in Arithmetic, (2009), 87. doi: 10.1090/conm/487/09526.

[12]

S. R. Ghorpade and M. A. Tsfasman, Classical varieties, codes and combinatorics,, in Formal Power Series and Algebraic Combinatorics (eds. K. Eriksson and S. Linusson), (2003), 75.

[13]

S. R. Ghorpade and M. A Tsfasman, Schubert varieties, linear codes and enumerative combinatorics,, Finite Fields Appl., 11 (2005), 684. doi: 10.1016/j.ffa.2004.09.002.

[14]

M. Grass, http://codetables.de, ., ().

[15]

L. Guerra and R. Vincenti, On the linear codes arising from Schubert varieties,, Des. Codes Crypt., 33 (2004), 173. doi: 10.1023/B:DESI.0000035470.05639.2b.

[16]

G.-M. Hana, Schubert unions and codes from $l$-step flag varieties,, in Arithmetic, (2009), 43.

[17]

G. M. Hana and T. Johnsen, Scroll codes,, Des. Codes Crypt., 45 (2007), 365. doi: 10.1007/s10623-007-9131-0.

[18]

J. P. Hansen, T. Johnsen and K. Ranestad, Schubert unions in Grassmann varieties,, Finite Fields Appl., 13 (2007), 738. doi: 10.1016/j.ffa.2007.06.003.

[19]

J. P. Hansen, T. Johnsen and K. Ranestad, Grassman codes and Schubert unions,, in Arithmetic, (2009), 103.

[20]

R. Hill, A First Course in Coding Theory,, Clarendon Press, (1986).

[21]

T. Ikeda, Schubert classes in the equivariant cohomology of the Lagrangian-Grassmannian,, Adv. Math., 215 (2007), 1. doi: 10.1016/j.aim.2007.04.008.

[22]

A. Iliek and K. Ranestad, Geometry of the Lagrangian-Grassmannian $LG(3,6)$ with applications to Brill-Noether Loci,, Michigan Math. J., 53 (2005), 383. doi: 10.1307/mmj/1123090775.

[23]

A. Kresch and H. Tamvakis, Quantum cohomology of the Lagrangian-Grassmannian,, J. Algebraic Geometry, 12 (2003), 777. doi: 10.1090/S1056-3911-03-00347-3.

[24]

D. Yu Nogin, Codes associated to Grassmannians,, in Arithmetic, (1996), 145.

[25]

D. Yu Nogin, Generalized Hamming weights of codes on multidimensional quadrics,, Prob. Inf. Trans. Theory, 29 (1993), 21.

[26]

V. Pless, Power moment identities on weight distribution in error-correcting codes,, Inf. Contr., 6 (1962), 147.

[27]

F. Rodier, Codes from flag varieties over a finite field,, J. Pure Apppl. Algebra, 178 (2003), 203. doi: 10.1016/S0022-4049(02)00188-3.

[28]

C. T. Ryan, An application of Grassmannian varieties to coding theory,, Congr. Numer, 57 (1987), 257.

[29]

C. T. Ryan, Projective codes based on Grassmann varieties,, Congr. Num, 57 (1987), 273.

[30]

C. T. Ryan and K. M. Ryan, The minimum weight of Grassmannian codes $C(k,n)$,, Disc. Appl. Math, 28 (1990), 149. doi: 10.1016/0166-218X(90)90112-P.

[31]

M. A. Tsfasman and S. G. Vladut, Algebraic Geometric Codes,, Kluwer, (1991). doi: 10.1007/978-94-011-3810-9.

[32]

M. A. Tsfasman and S. G. Vladut, Geometric approach to higher weights,, IEEE Trans. Inf. Theory, 41 (1995), 1564. doi: 10.1109/18.476213.

[33]

M. A. Tsfasman, S. G. Vladut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, Amer. Math. Soc., (2007). doi: 10.1090/surv/139.

[34]

V. K. Wei, Generalized Hamming weights for linear codes,, IEEE Trans. Inf. Theory, 37 (1991), 1412. doi: 10.1109/18.133259.

[35]

X. Xiang, On the minimum distance conjecture for Schubert codes,, IEEE Trans. Inf. Theory 54 (2008), 54 (2008), 486. doi: 10.1109/TIT.2007.911283.

show all references

References:
[1]

E. Ballico and A. Cossidente, On the finite field nullstellensatz,, Austr. J. Combin., 21 (2000), 57.

[2]

E. Ballico and A. Cossidente, Finite field nullstellensatz and Grassmannians,, Austr. J. Combin., 24 (2001), 313.

[3]

R. Bernt, An Introduction to Symplectic Geometry,, Amer. Math. Soc., (1998).

[4]

J. Buczynski, Properties of Legendrian subvarieties of projective space,, Geometria Dedicata, 118 (2006), 87. doi: 10.1007/s10711-005-9027-y.

[5]

J. Carrillo-Pacheco and F. Zaldivar, On Lagrangian-Grassmannian codes,, Des. Codes Crypt., 60 (2011), 291. doi: 10.1007/s10623-010-9434-4.

[6]

H. Chen, On the minimum distance of Schubert codes,, IEEE Trans. Inf. Theory, 46 (2000), 1535. doi: 10.1109/18.850689.

[7]

W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry,, Cambridge Univ. Press, (1997).

[8]

S. R. Ghorpade and G. Lachaud, Higher weights of Grassmann codes,, in Coding Theory, (2000), 122.

[9]

S. R. Ghorpade and G. Lachaud, Hyperplane sections of Grassmannians and the number of MDS linear codes,, Finite Fields Appl., 7 (2001), 468. doi: 10.1006/ffta.2000.0299.

[10]

S. R. Ghorpade, A. R. Patil and H. K. Pillai, Decomposable subspaces, linear sections of Grassmann varieties, and higher weights of Grassmann codes,, Finite Fields Appl., 15 (2009), 54. doi: 10.1016/j.ffa.2008.08.001.

[11]

S. R. Ghorpade, A. R. Patil and H. K. Pillai, Subclose families, threshold graphs, and the weight hierarchy of Grassmann and Schubert codes,, in Arithmetic, (2009), 87. doi: 10.1090/conm/487/09526.

[12]

S. R. Ghorpade and M. A. Tsfasman, Classical varieties, codes and combinatorics,, in Formal Power Series and Algebraic Combinatorics (eds. K. Eriksson and S. Linusson), (2003), 75.

[13]

S. R. Ghorpade and M. A Tsfasman, Schubert varieties, linear codes and enumerative combinatorics,, Finite Fields Appl., 11 (2005), 684. doi: 10.1016/j.ffa.2004.09.002.

[14]

M. Grass, http://codetables.de, ., ().

[15]

L. Guerra and R. Vincenti, On the linear codes arising from Schubert varieties,, Des. Codes Crypt., 33 (2004), 173. doi: 10.1023/B:DESI.0000035470.05639.2b.

[16]

G.-M. Hana, Schubert unions and codes from $l$-step flag varieties,, in Arithmetic, (2009), 43.

[17]

G. M. Hana and T. Johnsen, Scroll codes,, Des. Codes Crypt., 45 (2007), 365. doi: 10.1007/s10623-007-9131-0.

[18]

J. P. Hansen, T. Johnsen and K. Ranestad, Schubert unions in Grassmann varieties,, Finite Fields Appl., 13 (2007), 738. doi: 10.1016/j.ffa.2007.06.003.

[19]

J. P. Hansen, T. Johnsen and K. Ranestad, Grassman codes and Schubert unions,, in Arithmetic, (2009), 103.

[20]

R. Hill, A First Course in Coding Theory,, Clarendon Press, (1986).

[21]

T. Ikeda, Schubert classes in the equivariant cohomology of the Lagrangian-Grassmannian,, Adv. Math., 215 (2007), 1. doi: 10.1016/j.aim.2007.04.008.

[22]

A. Iliek and K. Ranestad, Geometry of the Lagrangian-Grassmannian $LG(3,6)$ with applications to Brill-Noether Loci,, Michigan Math. J., 53 (2005), 383. doi: 10.1307/mmj/1123090775.

[23]

A. Kresch and H. Tamvakis, Quantum cohomology of the Lagrangian-Grassmannian,, J. Algebraic Geometry, 12 (2003), 777. doi: 10.1090/S1056-3911-03-00347-3.

[24]

D. Yu Nogin, Codes associated to Grassmannians,, in Arithmetic, (1996), 145.

[25]

D. Yu Nogin, Generalized Hamming weights of codes on multidimensional quadrics,, Prob. Inf. Trans. Theory, 29 (1993), 21.

[26]

V. Pless, Power moment identities on weight distribution in error-correcting codes,, Inf. Contr., 6 (1962), 147.

[27]

F. Rodier, Codes from flag varieties over a finite field,, J. Pure Apppl. Algebra, 178 (2003), 203. doi: 10.1016/S0022-4049(02)00188-3.

[28]

C. T. Ryan, An application of Grassmannian varieties to coding theory,, Congr. Numer, 57 (1987), 257.

[29]

C. T. Ryan, Projective codes based on Grassmann varieties,, Congr. Num, 57 (1987), 273.

[30]

C. T. Ryan and K. M. Ryan, The minimum weight of Grassmannian codes $C(k,n)$,, Disc. Appl. Math, 28 (1990), 149. doi: 10.1016/0166-218X(90)90112-P.

[31]

M. A. Tsfasman and S. G. Vladut, Algebraic Geometric Codes,, Kluwer, (1991). doi: 10.1007/978-94-011-3810-9.

[32]

M. A. Tsfasman and S. G. Vladut, Geometric approach to higher weights,, IEEE Trans. Inf. Theory, 41 (1995), 1564. doi: 10.1109/18.476213.

[33]

M. A. Tsfasman, S. G. Vladut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, Amer. Math. Soc., (2007). doi: 10.1090/surv/139.

[34]

V. K. Wei, Generalized Hamming weights for linear codes,, IEEE Trans. Inf. Theory, 37 (1991), 1412. doi: 10.1109/18.133259.

[35]

X. Xiang, On the minimum distance conjecture for Schubert codes,, IEEE Trans. Inf. Theory 54 (2008), 54 (2008), 486. doi: 10.1109/TIT.2007.911283.

[1]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[2]

Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485

[3]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[4]

Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443

[5]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[6]

Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

[7]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[8]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[9]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[10]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[11]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[12]

Seungkook Park. Coherence of sensing matrices coming from algebraic-geometric codes. Advances in Mathematics of Communications, 2016, 10 (2) : 429-436. doi: 10.3934/amc.2016016

[13]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[14]

Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163

[15]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[16]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[17]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[18]

Xia Li, Feng Cheng, Chunming Tang, Zhengchun Zhou. Some classes of LCD codes and self-orthogonal codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 267-280. doi: 10.3934/amc.2019018

[19]

Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035

[20]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]