February  2016, 10(1): 79-94. doi: 10.3934/amc.2016.10.79

On skew polynomial codes and lattices from quotients of cyclic division algebras

1. 

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Received  December 2014 Revised  August 2015 Published  March 2016

We propose a variation of Construction A of lattices from linear codes defined using the quotient $\Lambda/\mathfrak{p}\Lambda$ of some order $\Lambda$ inside a cyclic division $F$-algebra, for $\mathfrak{p}$ a prime ideal of a number field $F$. To obtain codes over this quotient, we first give an isomorphism between $\Lambda/\mathfrak{p}\Lambda$ and a ring of skew polynomials. We then discuss definitions and basic properties of skew polynomial codes, which are needed for Construction A, but also explore further properties of the dual of such codes. We conclude by providing an application to space-time coding, which is the original motivation to consider cyclic division $F$-algebras as a starting point for this variation of Construction A.
Citation: Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79
References:
[1]

M. Artin, Noncommutative Rings,, 1999., ().

[2]

C. Bachoc, Applications of coding theory to the construction of modular lattices,, J. Combin. Theory Ser. A, 78 (1997), 92. doi: 10.1006/jcta.1996.2763.

[3]

J.-C. Belfiore and F. Oggier, An error probability approach to MIMO wiretap channels,, IEEE Trans. Commun., 61 (2013), 3396.

[4]

G. Berhuy and F. Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless Communication,, AMS, (2013). doi: 10.1090/surv/191.

[5]

A. Bonnecaze, P. Solé and A. R. Calderbank, Quaternary qudratic residue codes and unimodular lattices,, IEEE Trans. Inf. Theory, 41 (1995), 366. doi: 10.1109/18.370138.

[6]

D. Boucher, W. Geiselmann and F. Ulmer, Skew cyclic codes,, Appl. Algebra Engin. Commun. Comput., 18 (2007), 379. doi: 10.1007/s00200-007-0043-z.

[7]

D. Boucher and F. Ulmer, Coding with skew polynomial rings,, J. Symb. Comput., 44 (2009), 1644. doi: 10.1016/j.jsc.2007.11.008.

[8]

D. Boucher, F. Ulmer and P. Solé, Skew constacyclic codes over Galois rings,, Adv. Math. Commun., 2 (2008), 273. doi: 10.3934/amc.2008.2.273.

[9]

J. H. Conway and N. J. A Sloane, Sphere Packings, Lattices and Groups,, Springer., ().

[10]

J. Ducoat and F. Oggier, Lattice encoding of cyclic codes from skew-polynomial rings,, in Coding Theory and Applications, (2015), 161.

[11]

W. Ebeling, Lattices and Codes, A Course Partially Based on Lectures by Friedrich Hirzebruch,, Springer, (2013). doi: 10.1007/978-3-658-00360-9.

[12]

G. D. Forney, Coset Codes Part I: Introduction and geometrical classification,, IEEE Trans. Inf. Theory, 34 (1988), 1123. doi: 10.1109/18.21245.

[13]

F. Oggier and J.-C. Belfiore, Enabling multiplication in lattice codes via construction A,, in IEEE Int. Workshop Inf. Theory, (2013), 1.

[14]

F. Oggier and B. A. Sethuraman, Quotients of orders in cyclic algebras and space-time codes,, Adv. Math. Commun., 7 (2013), 441. doi: 10.3934/amc.2013.7.441.

[15]

B. A. Sethuraman, B. S. Rajan and V. Shashidhar, Full-diversity, high-rate space-time block codes from division algebras,, IEEE Trans. Inf. Theory, 49 (2003), 2596. doi: 10.1109/TIT.2003.817831.

show all references

References:
[1]

M. Artin, Noncommutative Rings,, 1999., ().

[2]

C. Bachoc, Applications of coding theory to the construction of modular lattices,, J. Combin. Theory Ser. A, 78 (1997), 92. doi: 10.1006/jcta.1996.2763.

[3]

J.-C. Belfiore and F. Oggier, An error probability approach to MIMO wiretap channels,, IEEE Trans. Commun., 61 (2013), 3396.

[4]

G. Berhuy and F. Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless Communication,, AMS, (2013). doi: 10.1090/surv/191.

[5]

A. Bonnecaze, P. Solé and A. R. Calderbank, Quaternary qudratic residue codes and unimodular lattices,, IEEE Trans. Inf. Theory, 41 (1995), 366. doi: 10.1109/18.370138.

[6]

D. Boucher, W. Geiselmann and F. Ulmer, Skew cyclic codes,, Appl. Algebra Engin. Commun. Comput., 18 (2007), 379. doi: 10.1007/s00200-007-0043-z.

[7]

D. Boucher and F. Ulmer, Coding with skew polynomial rings,, J. Symb. Comput., 44 (2009), 1644. doi: 10.1016/j.jsc.2007.11.008.

[8]

D. Boucher, F. Ulmer and P. Solé, Skew constacyclic codes over Galois rings,, Adv. Math. Commun., 2 (2008), 273. doi: 10.3934/amc.2008.2.273.

[9]

J. H. Conway and N. J. A Sloane, Sphere Packings, Lattices and Groups,, Springer., ().

[10]

J. Ducoat and F. Oggier, Lattice encoding of cyclic codes from skew-polynomial rings,, in Coding Theory and Applications, (2015), 161.

[11]

W. Ebeling, Lattices and Codes, A Course Partially Based on Lectures by Friedrich Hirzebruch,, Springer, (2013). doi: 10.1007/978-3-658-00360-9.

[12]

G. D. Forney, Coset Codes Part I: Introduction and geometrical classification,, IEEE Trans. Inf. Theory, 34 (1988), 1123. doi: 10.1109/18.21245.

[13]

F. Oggier and J.-C. Belfiore, Enabling multiplication in lattice codes via construction A,, in IEEE Int. Workshop Inf. Theory, (2013), 1.

[14]

F. Oggier and B. A. Sethuraman, Quotients of orders in cyclic algebras and space-time codes,, Adv. Math. Commun., 7 (2013), 441. doi: 10.3934/amc.2013.7.441.

[15]

B. A. Sethuraman, B. S. Rajan and V. Shashidhar, Full-diversity, high-rate space-time block codes from division algebras,, IEEE Trans. Inf. Theory, 49 (2003), 2596. doi: 10.1109/TIT.2003.817831.

[1]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[2]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[3]

Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323

[4]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[5]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[6]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[7]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[8]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[9]

Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175

[10]

Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255

[11]

Susanne Pumplün, Andrew Steele. The nonassociative algebras used to build fast-decodable space-time block codes. Advances in Mathematics of Communications, 2015, 9 (4) : 449-469. doi: 10.3934/amc.2015.9.449

[12]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[13]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[14]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[15]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[16]

Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046

[17]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[18]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[19]

Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012

[20]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]