# American Institute of Mathematical Sciences

August  2015, 9(3): 277-289. doi: 10.3934/amc.2015.9.277

## The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$

 1 Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar, Pin-125001, India, India 2 Department of Mathematics, M. D. University, Rohtak, Pin-124001, India

Received  October 2013 Published  July 2015

In this paper, an algorithm is given for computing the weight distributions of all irreducible cyclic codes of dimension $p^jd$ generated by $x^{p^j}-1$, where $p$ is an odd prime, $j\geq 0$ and $d > 1$. Then the weight distributions of all irreducible cyclic codes of length $p^n$ and $2p^n$ over $F_q$, where $n$ is a positive integer, $p$, $q$ are distinct odd primes and $q$ is primitive root modulo $p^n$, are obtained. The weight distributions of all the irreducible cyclic codes of length $3^{n+1}$ over $F_5$ are also determined explicitly.
Citation: Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277
##### References:
 [1] S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$,, Finite Fields Appl., 5 (1999), 177. doi: 10.1006/ffta.1998.0238. Google Scholar [2] L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes,, Inform. Control, 20 (1972), 158. Google Scholar [3] C. Ding, The weight distribution of some irreducible cyclic codes,, IEEE Trans. Inf. Theory, 55 (2009), 955. doi: 10.1109/TIT.2008.2011511. Google Scholar [4] R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes,, Finite Fields Appl., 11 (2005), 89. doi: 10.1016/j.ffa.2004.06.002. Google Scholar [5] F. J. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes,, IEEE Trans. Inf. Theory, 27 (1981), 796. doi: 10.1109/TIT.1981.1056420. Google Scholar [6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, North Holland, (1977). Google Scholar [7] M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes,, IEEE Trans. Inf. Theory, 45 (1999), 1244. doi: 10.1109/18.761277. Google Scholar [8] M. Pruthi and S. K. Arora, Minimal cyclic codes of prime power length,, Finite Fields Appl., 3 (1997), 99. doi: 10.1006/ffta.1996.0156. Google Scholar [9] A. Sharma and G. K. Bakshi, The weight distributions of some irreducible cyclic codes,, Finite Fields Appl., 18 (2012), 144. doi: 10.1016/j.ffa.2011.07.002. Google Scholar [10] A. Sharma, G. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$,, Finite Fields Appl., 13 (2007), 1086. doi: 10.1016/j.ffa.2007.07.004. Google Scholar [11] M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes,, J. Number Theory, 55 (1995), 145. doi: 10.1006/jnth.1995.1133. Google Scholar

show all references

##### References:
 [1] S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$,, Finite Fields Appl., 5 (1999), 177. doi: 10.1006/ffta.1998.0238. Google Scholar [2] L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes,, Inform. Control, 20 (1972), 158. Google Scholar [3] C. Ding, The weight distribution of some irreducible cyclic codes,, IEEE Trans. Inf. Theory, 55 (2009), 955. doi: 10.1109/TIT.2008.2011511. Google Scholar [4] R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes,, Finite Fields Appl., 11 (2005), 89. doi: 10.1016/j.ffa.2004.06.002. Google Scholar [5] F. J. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes,, IEEE Trans. Inf. Theory, 27 (1981), 796. doi: 10.1109/TIT.1981.1056420. Google Scholar [6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, North Holland, (1977). Google Scholar [7] M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes,, IEEE Trans. Inf. Theory, 45 (1999), 1244. doi: 10.1109/18.761277. Google Scholar [8] M. Pruthi and S. K. Arora, Minimal cyclic codes of prime power length,, Finite Fields Appl., 3 (1997), 99. doi: 10.1006/ffta.1996.0156. Google Scholar [9] A. Sharma and G. K. Bakshi, The weight distributions of some irreducible cyclic codes,, Finite Fields Appl., 18 (2012), 144. doi: 10.1016/j.ffa.2011.07.002. Google Scholar [10] A. Sharma, G. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$,, Finite Fields Appl., 13 (2007), 1086. doi: 10.1016/j.ffa.2007.07.004. Google Scholar [11] M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes,, J. Number Theory, 55 (1995), 145. doi: 10.1006/jnth.1995.1133. Google Scholar
 [1] Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 [2] Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433 [3] Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017 [4] Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023 [5] Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 [6] Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 [7] Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341 [8] Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 [9] Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006 [10] Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008 [11] Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 [12] Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 [13] Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 [14] Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177 [15] Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013 [16] Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011 [17] Christine A. Kelley, Deepak Sridhara. Eigenvalue bounds on the pseudocodeword weight of expander codes. Advances in Mathematics of Communications, 2007, 1 (3) : 287-306. doi: 10.3934/amc.2007.1.287 [18] Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55 [19] Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025 [20] Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

2018 Impact Factor: 0.879

## Metrics

• HTML views (0)
• Cited by (1)

• on AIMS