# American Institute of Mathematical Sciences

February  2015, 9(1): 1-7. doi: 10.3934/amc.2015.9.1

## Existence conditions for self-orthogonal negacyclic codes over finite fields

 1 Department of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China 2 School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China 3 School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore

Received  May 2013 Revised  April 2014 Published  February 2015

In this paper, we obtain necessary and sufficient conditions for the nonexistence of nonzero self-orthogonal negacyclic codes over a finite field, of length relatively prime to the characteristic of the underlying field.
Citation: Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1
##### References:
 [1] G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field,, Finite Fields Appl., 19 (2013), 39. doi: 10.1016/j.ffa.2012.10.003. Google Scholar [2] T. Blackford, Negacyclic duadic codes,, Finite Fields Appl., 14 (2008), 930. doi: 10.1016/j.ffa.2008.05.004. Google Scholar [3] I. F. Blake, S. Gao and R. C. Mullin, Explicit factorization of $X^{2^k}+1$ over $F_p$ with prime $p\equiv3 (mod 4)$,, Appl. Algebra Engrg. Comm. Comput., 4 (1993), 89. doi: 10.1007/BF01386832. Google Scholar [4] H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$,, Finite Fields Appl., 18 (2012), 133. doi: 10.1016/j.ffa.2011.07.003. Google Scholar [5] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals,, Discrete Math., 313 (2013), 983. doi: 10.1016/j.disc.2013.01.024. Google Scholar [6] W. Fu and T. Feng, On self-orthogonal group ring codes,, Designs Codes Crypt., 50 (2009), 203. doi: 10.1007/s10623-008-9224-4. Google Scholar [7] W. C. Huffman, On the classification and enumeration of self-dual codes,, Finite Fields Appl., 11 (2005), 451. doi: 10.1016/j.ffa.2005.05.012. Google Scholar [8] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge University Press, (2003). Google Scholar [9] Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,, IEEE Trans. Inf. Theory, 57 (2011), 2243. doi: 10.1109/TIT.2010.2092415. Google Scholar [10] X. Kai and S. Zhu, On cyclic self-dual codes,, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 509. doi: 10.1007/s00200-008-0086-9. Google Scholar [11] L. Kathuria and M. Raka, Existence of cyclic self-orthogonal codes: a note on a result of Vera Pless,, Adv. Math. Commun., 6 (2012), 499. doi: 10.3934/amc.2012.6.499. Google Scholar [12] R. Lidl and H. Niederreiter, Finite Fields,, Cambridge University Press, (2008). Google Scholar [13] V. Pless, Cyclotomy and cyclic codes, the unreasonable effectiveness of number theory,, in Proc. Sympos. Appl. Math., (1992), 91. Google Scholar [14] N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes,, IEEE Trans. Inf. Theory, 29 (1983), 364. doi: 10.1109/TIT.1983.1056682. Google Scholar [15] Z. Wan, Lectures on Finite Fields and Galois Rings,, World Scientific Publishing, (2003). Google Scholar [16] W. Willems, A note on self-dual group codes,, IEEE Trans. Inf. Theory, 48 (2002), 3107. doi: 10.1109/TIT.2002.805076. Google Scholar

show all references

##### References:
 [1] G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field,, Finite Fields Appl., 19 (2013), 39. doi: 10.1016/j.ffa.2012.10.003. Google Scholar [2] T. Blackford, Negacyclic duadic codes,, Finite Fields Appl., 14 (2008), 930. doi: 10.1016/j.ffa.2008.05.004. Google Scholar [3] I. F. Blake, S. Gao and R. C. Mullin, Explicit factorization of $X^{2^k}+1$ over $F_p$ with prime $p\equiv3 (mod 4)$,, Appl. Algebra Engrg. Comm. Comput., 4 (1993), 89. doi: 10.1007/BF01386832. Google Scholar [4] H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$,, Finite Fields Appl., 18 (2012), 133. doi: 10.1016/j.ffa.2011.07.003. Google Scholar [5] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals,, Discrete Math., 313 (2013), 983. doi: 10.1016/j.disc.2013.01.024. Google Scholar [6] W. Fu and T. Feng, On self-orthogonal group ring codes,, Designs Codes Crypt., 50 (2009), 203. doi: 10.1007/s10623-008-9224-4. Google Scholar [7] W. C. Huffman, On the classification and enumeration of self-dual codes,, Finite Fields Appl., 11 (2005), 451. doi: 10.1016/j.ffa.2005.05.012. Google Scholar [8] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge University Press, (2003). Google Scholar [9] Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,, IEEE Trans. Inf. Theory, 57 (2011), 2243. doi: 10.1109/TIT.2010.2092415. Google Scholar [10] X. Kai and S. Zhu, On cyclic self-dual codes,, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 509. doi: 10.1007/s00200-008-0086-9. Google Scholar [11] L. Kathuria and M. Raka, Existence of cyclic self-orthogonal codes: a note on a result of Vera Pless,, Adv. Math. Commun., 6 (2012), 499. doi: 10.3934/amc.2012.6.499. Google Scholar [12] R. Lidl and H. Niederreiter, Finite Fields,, Cambridge University Press, (2008). Google Scholar [13] V. Pless, Cyclotomy and cyclic codes, the unreasonable effectiveness of number theory,, in Proc. Sympos. Appl. Math., (1992), 91. Google Scholar [14] N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes,, IEEE Trans. Inf. Theory, 29 (1983), 364. doi: 10.1109/TIT.1983.1056682. Google Scholar [15] Z. Wan, Lectures on Finite Fields and Galois Rings,, World Scientific Publishing, (2003). Google Scholar [16] W. Willems, A note on self-dual group codes,, IEEE Trans. Inf. Theory, 48 (2002), 3107. doi: 10.1109/TIT.2002.805076. Google Scholar
 [1] Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 [2] Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 [3] Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45 [4] Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261 [5] Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499 [6] Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437 [7] Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 [8] Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 [9] Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399 [10] Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889 [11] M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407 [12] Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83 [13] José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149 [14] Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 [15] Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 [16] Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036 [17] M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281 [18] Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275 [19] Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042 [20] Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

2018 Impact Factor: 0.879