May  2013, 7(2): 219-229. doi: 10.3934/amc.2013.7.219

New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes

1. 

Department of Mathematics, Fatih University, 34500, Istanbul

Received  January 2013 Published  May 2013

A lift of binary self-dual codes to the ring $R_2$ is described. By using this lift, a family of self-dual codes over $R_2$ of length $17$ are constructed. Taking the binary images of these codes, extremal binary self-dual codes of length $68$ are obtained. For the first time in the literature, extremal binary codes of length $68$ with $\gamma=4$ and $\gamma = 6$ in $W_{68,2}$ have been obtained. In addition to these, six new codes with $\gamma = 0$ and fourteen new codes with $\gamma = 2$ in $W_{68,2}$ have also been found.
Citation: Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219
References:
[1]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,, J. Symbolic Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[2]

S. Bouyuklieva, Some Optimal self-orthogonal and self-dual codes,, J. Discrete Math., 287 (2004), 1. doi: 10.1016/j.disc.2004.06.010.

[3]

S. Bouyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2,, IEEE Trans. Inform. Theory, 44 (1998), 323. doi: 10.1109/18.651059.

[4]

S. Bouyuklieva, N. Yankov and J.-L. Kim, Classification of binary self-dual [48,24,10]-codes with an automorphism odd prime order,, Finite Fields Appl., 18 (2012), 1104. doi: 10.1016/j.ffa.2012.08.002.

[5]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319. doi: 10.1109/18.59931.

[6]

S. T. Dougherty, A. Gulliver and M. Harada, Extremal binary self-dual codes,, IEEE Trans. Infrom. Theory, 43 (1997), 2036. doi: 10.1109/18.641574.

[7]

S. T. Dougherty, J.-L. Kim, H. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings,, Finite Fields Appl., 16 (2010), 4. doi: 10.1016/j.ffa.2009.11.003.

[8]

S. T. Dougherty, J.-L. Kim and H. Liu, Constructions of self-dual codes over finite commutative chain rings,, J. Inform. Coding Theory, 1 (2010), 171. doi: 10.1504/IJICOT.2010.032133.

[9]

S. T. Dougherty, B. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images,, Finite Fields Appl., 17 (2011), 205. doi: 10.1016/j.ffa.2010.11.002.

[10]

S. T. Dougherty, B. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-dual codes,, European J. Pure Appl. Math., 6 (2013), 89.

[11]

P. Gaborit and A. Otmani, Experimental constructions of self-dual codes,, Finite Fields Appl., 9 (2003), 372. doi: 10.1016/S1071-5797(03)00011-X.

[12]

S. Karadeniz and B. Yildiz, $R_2$-generator matrices for extremal self-dual codes of length 68,, available online at \url{http://www.fatih.edu.tr/~akaya/NewSelf-dual68.pdf}, ().

[13]

S. Karadeniz and B. Yildiz, Double-circulant and double-bordered-circulant constructions for self-dual codes over $R_2$,, Adv. Math. Commun., 6 (2012), 193. doi: 10.3934/amc.2012.6.193.

[14]

S. Karadeniz and B. Yildiz, New extremal binary self-dual codes of length $64$ as $R_3$-lifts of the extended binary Hamming code,, submitted., ().

[15]

H. H. Kim, H. Lee, J. B. Lee and Y. Lee, Construction of self-dual codes with an automorpihsm of of order $p$,, Adv. Math. Commun., 5 (2011), 23. doi: 10.3934/amc.2011.5.23.

[16]

A. Munemasa, Database of self-dual codes,, available online at \url{http://www.math.is.tohoku.ac.jp/~munemasa/research/codes/data/2/18.magma}, ().

[17]

T. Nishimura, A new extremal self-dual code of length 64,, IEEE Trans. Inform. Theory, 50 (2004), 2173. doi: 10.1109/TIT.2004.833359.

[18]

E. M. Rains, Shadow bounds for self dual codes,, IEEE Trans. Inform. Theory, 44 (1998), 134. doi: 10.1109/18.651000.

[19]

H. P. Tsai, P. Y. Shih, R. Y. Wuh, W. K. Su and C. H. Chen, Construction of self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 3826. doi: 10.1109/TIT.2008.926454.

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory,, Amer. J. Math., 121 (1999), 555. doi: 10.1353/ajm.1999.0024.

[21]

B. Yildiz and S. Karadeniz, Linear codes over $\mathbb F_2+u\mathbb F_2+v\mathbb F_2+uv\mathbb F_2$,, Des. Codes Crypt., 54 (2010), 61. doi: 10.1007/s10623-009-9309-8.

[22]

B. Yildiz and S. Karadeniz, Self-dual codes over $\mathbb F_2+u\mathbb F_2+v\mathbb F_2+uv\mathbb F_2$,, J. Franklin Inst., 347 (2010), 1888. doi: 10.1016/j.jfranklin.2010.10.007.

show all references

References:
[1]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,, J. Symbolic Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[2]

S. Bouyuklieva, Some Optimal self-orthogonal and self-dual codes,, J. Discrete Math., 287 (2004), 1. doi: 10.1016/j.disc.2004.06.010.

[3]

S. Bouyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2,, IEEE Trans. Inform. Theory, 44 (1998), 323. doi: 10.1109/18.651059.

[4]

S. Bouyuklieva, N. Yankov and J.-L. Kim, Classification of binary self-dual [48,24,10]-codes with an automorphism odd prime order,, Finite Fields Appl., 18 (2012), 1104. doi: 10.1016/j.ffa.2012.08.002.

[5]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319. doi: 10.1109/18.59931.

[6]

S. T. Dougherty, A. Gulliver and M. Harada, Extremal binary self-dual codes,, IEEE Trans. Infrom. Theory, 43 (1997), 2036. doi: 10.1109/18.641574.

[7]

S. T. Dougherty, J.-L. Kim, H. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings,, Finite Fields Appl., 16 (2010), 4. doi: 10.1016/j.ffa.2009.11.003.

[8]

S. T. Dougherty, J.-L. Kim and H. Liu, Constructions of self-dual codes over finite commutative chain rings,, J. Inform. Coding Theory, 1 (2010), 171. doi: 10.1504/IJICOT.2010.032133.

[9]

S. T. Dougherty, B. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images,, Finite Fields Appl., 17 (2011), 205. doi: 10.1016/j.ffa.2010.11.002.

[10]

S. T. Dougherty, B. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-dual codes,, European J. Pure Appl. Math., 6 (2013), 89.

[11]

P. Gaborit and A. Otmani, Experimental constructions of self-dual codes,, Finite Fields Appl., 9 (2003), 372. doi: 10.1016/S1071-5797(03)00011-X.

[12]

S. Karadeniz and B. Yildiz, $R_2$-generator matrices for extremal self-dual codes of length 68,, available online at \url{http://www.fatih.edu.tr/~akaya/NewSelf-dual68.pdf}, ().

[13]

S. Karadeniz and B. Yildiz, Double-circulant and double-bordered-circulant constructions for self-dual codes over $R_2$,, Adv. Math. Commun., 6 (2012), 193. doi: 10.3934/amc.2012.6.193.

[14]

S. Karadeniz and B. Yildiz, New extremal binary self-dual codes of length $64$ as $R_3$-lifts of the extended binary Hamming code,, submitted., ().

[15]

H. H. Kim, H. Lee, J. B. Lee and Y. Lee, Construction of self-dual codes with an automorpihsm of of order $p$,, Adv. Math. Commun., 5 (2011), 23. doi: 10.3934/amc.2011.5.23.

[16]

A. Munemasa, Database of self-dual codes,, available online at \url{http://www.math.is.tohoku.ac.jp/~munemasa/research/codes/data/2/18.magma}, ().

[17]

T. Nishimura, A new extremal self-dual code of length 64,, IEEE Trans. Inform. Theory, 50 (2004), 2173. doi: 10.1109/TIT.2004.833359.

[18]

E. M. Rains, Shadow bounds for self dual codes,, IEEE Trans. Inform. Theory, 44 (1998), 134. doi: 10.1109/18.651000.

[19]

H. P. Tsai, P. Y. Shih, R. Y. Wuh, W. K. Su and C. H. Chen, Construction of self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 3826. doi: 10.1109/TIT.2008.926454.

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory,, Amer. J. Math., 121 (1999), 555. doi: 10.1353/ajm.1999.0024.

[21]

B. Yildiz and S. Karadeniz, Linear codes over $\mathbb F_2+u\mathbb F_2+v\mathbb F_2+uv\mathbb F_2$,, Des. Codes Crypt., 54 (2010), 61. doi: 10.1007/s10623-009-9309-8.

[22]

B. Yildiz and S. Karadeniz, Self-dual codes over $\mathbb F_2+u\mathbb F_2+v\mathbb F_2+uv\mathbb F_2$,, J. Franklin Inst., 347 (2010), 1888. doi: 10.1016/j.jfranklin.2010.10.007.

[1]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[2]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[3]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[4]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[5]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[6]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[7]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[8]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[9]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[10]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[11]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[12]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[13]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[14]

Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and near-MDS self-dual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349-361. doi: 10.3934/amc.2009.3.349

[15]

Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287

[16]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[17]

Christos Koukouvinos, Dimitris E. Simos. Construction of new self-dual codes over $GF(5)$ using skew-Hadamard matrices. Advances in Mathematics of Communications, 2009, 3 (3) : 251-263. doi: 10.3934/amc.2009.3.251

[18]

Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004

[19]

Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193

[20]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]