August  2012, 6(3): 347-361. doi: 10.3934/amc.2012.6.347

Cycle structure of permutation functions over finite fields and their applications

1. 

Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran, Iran

2. 

School of Mathematics and Statistics, Carleton University, Ottawa, Canada

Received  November 2011 Revised  May 2012 Published  August 2012

In this work we establish some new interleavers based on permutation functions. The inverses of these interleavers are known over a finite field $\mathbb F_q$. For the first time Möbius and Rédei functions are used to give new deterministic interleavers. Furthermore we employ Skolem sequences in order to find new interleavers with known cycle structure. In the case of Rédei functions an exact formula for the inverse function is derived. The cycle structure of Rédei functions is also investigated. The self-inverse and non-self-inverse versions of these permutation functions can be used to construct new interleavers.
Citation: Amin Sakzad, Mohammad-Reza Sadeghi, Daniel Panario. Cycle structure of permutation functions over finite fields and their applications. Advances in Mathematics of Communications, 2012, 6 (3) : 347-361. doi: 10.3934/amc.2012.6.347
References:
[1]

S. Ahmad, Cycle structure of automorphisms of finite cyclic groups,, J. Comb. Theory, 6 (1969), 370. doi: 10.1016/S0021-9800(69)80032-3.

[2]

C. Baker, A. Bonato and P. Kergin, Skolem arrays and Skolem labellings of ladder graphs,, Ars Combin., 63 (2002), 97.

[3]

C. Berrou, A. Glavieux and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: turbo codes,, in, (1993), 1064.

[4]

J. Boutros and G. Zemor, On quasi-cyclic interleavers for parallel turbo codes,, IEEE Trans. Inform. Theory, 52 (2006), 1732. doi: 10.1109/TIT.2006.871061.

[5]

G. Caire, G. Taricco and E. Biglieri, Bit-interleaved coded modulation,, IEEE Trans. Inform. Theory, 44 (1998), 927. doi: 10.1109/18.669123.

[6]

L. Carlitz, A note on permutation functions over a finite field,, Duke Math. J., 29 (1962), 325. doi: 10.1215/S0012-7094-62-02931-9.

[7]

A. Cesmelioglu, W. Meidl and A. Topuzoglu, On the cycle structure of permutation polynomials,, Finite Fields Appl., 14 (2008), 593. doi: 10.1016/j.ffa.2007.08.003.

[8]

M. Cheng, M. Nakashima, J. Hamkins, B. Moision and M. Barsoum, A decoder architecture for high-speed free-space laser communications,, Proc. SPIE, 5712 (2005), 174. doi: 10.1117/12.591043.

[9]

C. J. Colbourn and J. H. Dinitz, "Handbook of Combinatorial Designs,'' 2nd edition,, Chapman & Hall/CRC, (2006). doi: 10.1201/9781420010541.

[10]

C. Corrada and I. Rubio, Deterministic interleavers for turbo codes with random-like performance and simple implementation,, in, (2003), 555.

[11]

C. Corrada and I. Rubio, Algebraic construction of interleavers using permutation monomials,, in, (2004), 911.

[12]

S. Crozier, New high-spread high-distance interleavers for turbo codes,, in, (2000), 3.

[13]

S. Crozier and P. Guinand, Distance upper bounds and true minimum distance results for turbo-codes designed with DRP interleavers,, Ann. Telecommun., 60 (2005), 10.

[14]

A. R. Eckler, The construction of missile guidance codes resistant to random interference,, Bell System Tech. J., 39 (1960), 973.

[15]

S. A. Eldin, N. Shalaby and F. Al-Thukair, Construction of Skolem sequences,, Int. J. Comp. Math., 70 (1998), 333. doi: 10.1080/00207169808804756.

[16]

N. Francetić and E. Mendelsohn, A survey of Skolem-type sequences and Rosa's use of them,, Math. Slovaca, 59 (2009), 39. doi: 10.2478/s12175-008-0110-3.

[17]

R. Lidl and G. L. Mullen, Cycle structure of Dickson permutation polynomials,, Math. J. Okayama Univ., 33 (1991), 1.

[18]

R. Lidl and G. L. Mullen, When does a polynomial over a finite field permute the elements of the field?,, Amer. Math. Monthly, 100 (1993), 71. doi: 10.2307/2324822.

[19]

R. Lidl and H. Niederreiter, "Finite Fields,'', Cambridge Univ. Press, (1997).

[20]

S. Lin and D. J. Costello, "Error Control Coding Fundamentals and Application,'' 2nd edition,, Pearson Prentice Hall, (2003).

[21]

V. Linek and Z. Jiang, Hooked $k$-extended Skolem sequences,, Discrete Math., 196 (1999), 229. doi: 10.1016/S0012-365X(98)00202-7.

[22]

B. Moision and M. Klimesh, Some observations on permutation polynomials,, JPL, ().

[23]

L. Rédei, Uber eindeuting umkehrbare polynome in endlichen kopern,, Acta Sci. Math., 11 (): 1946.

[24]

I. Rubio and C. Corrada, Cyclic decomposition of permutations of finite fields obtained using monomials,, in, (2004), 254.

[25]

I. Rubio, G. L. Mullen, C. Corrada and F. Castro, Dickson permutation polynomials that decompose in cycles of the same length,, in, (2008), 229.

[26]

J. Ryu and O. Y. Takeshita, On quadratic inverses for quadratic permutation polynomials over integer rings,, IEEE Trans. Inform. Theory, 52 (2006), 1254. doi: 10.1109/TIT.2005.864442.

[27]

A. Sakzad, D. Panario, M-R. Sadeghi and N. Eshghi, Self-inverse interleavers based on permutation functions for turbo codes,, in, (2010), 22.

[28]

A. Sakzad and M.-R. Sadeghi, On cycle-free lattices with high rate label codes,, Adv. Math. Commun., 4 (2010), 441. doi: 10.3934/amc.2010.4.441.

[29]

A. Sakzad, M-R. Sadeghi and D. Panario, Construction of turbo lattices,, in, (2010), 14.

[30]

J. Sun and O. Y. Takeshita, Interleavers for turbo codes using permutation polynomials over integer rings,, IEEE Trans. Inform. Theory, 51 (2005), 101. doi: 10.1109/TIT.2004.839478.

[31]

O. Y. Takeshita, Permutation polynomials interleavers: an algebraic geometric perspective,, IEEE Trans. Inform. Theory, 53 (2007), 2116. doi: 10.1109/TIT.2007.896870.

[32]

O. Y. Takeshita and D. J. Costello, New deterministic interleaver designs for turbo codes,, IEEE Trans. Inform. Theory, 46 (2000), 1988. doi: 10.1109/18.868474.

[33]

D. V. Truhachev, M. Lentmaier and K. S. Zigangirov, Some results concerning design and decoding of turbo-codes,, Probl. Inform. Trans., 37 (2001), 190. doi: 10.1023/A:1013821922527.

[34]

B. Vucetic, Y. Li, L. C. Perez and F. Jiang, Recent advances in turbo code design and theory,, Proc. IEEE, 95 (2007), 1323. doi: 10.1109/JPROC.2007.897975.

show all references

References:
[1]

S. Ahmad, Cycle structure of automorphisms of finite cyclic groups,, J. Comb. Theory, 6 (1969), 370. doi: 10.1016/S0021-9800(69)80032-3.

[2]

C. Baker, A. Bonato and P. Kergin, Skolem arrays and Skolem labellings of ladder graphs,, Ars Combin., 63 (2002), 97.

[3]

C. Berrou, A. Glavieux and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: turbo codes,, in, (1993), 1064.

[4]

J. Boutros and G. Zemor, On quasi-cyclic interleavers for parallel turbo codes,, IEEE Trans. Inform. Theory, 52 (2006), 1732. doi: 10.1109/TIT.2006.871061.

[5]

G. Caire, G. Taricco and E. Biglieri, Bit-interleaved coded modulation,, IEEE Trans. Inform. Theory, 44 (1998), 927. doi: 10.1109/18.669123.

[6]

L. Carlitz, A note on permutation functions over a finite field,, Duke Math. J., 29 (1962), 325. doi: 10.1215/S0012-7094-62-02931-9.

[7]

A. Cesmelioglu, W. Meidl and A. Topuzoglu, On the cycle structure of permutation polynomials,, Finite Fields Appl., 14 (2008), 593. doi: 10.1016/j.ffa.2007.08.003.

[8]

M. Cheng, M. Nakashima, J. Hamkins, B. Moision and M. Barsoum, A decoder architecture for high-speed free-space laser communications,, Proc. SPIE, 5712 (2005), 174. doi: 10.1117/12.591043.

[9]

C. J. Colbourn and J. H. Dinitz, "Handbook of Combinatorial Designs,'' 2nd edition,, Chapman & Hall/CRC, (2006). doi: 10.1201/9781420010541.

[10]

C. Corrada and I. Rubio, Deterministic interleavers for turbo codes with random-like performance and simple implementation,, in, (2003), 555.

[11]

C. Corrada and I. Rubio, Algebraic construction of interleavers using permutation monomials,, in, (2004), 911.

[12]

S. Crozier, New high-spread high-distance interleavers for turbo codes,, in, (2000), 3.

[13]

S. Crozier and P. Guinand, Distance upper bounds and true minimum distance results for turbo-codes designed with DRP interleavers,, Ann. Telecommun., 60 (2005), 10.

[14]

A. R. Eckler, The construction of missile guidance codes resistant to random interference,, Bell System Tech. J., 39 (1960), 973.

[15]

S. A. Eldin, N. Shalaby and F. Al-Thukair, Construction of Skolem sequences,, Int. J. Comp. Math., 70 (1998), 333. doi: 10.1080/00207169808804756.

[16]

N. Francetić and E. Mendelsohn, A survey of Skolem-type sequences and Rosa's use of them,, Math. Slovaca, 59 (2009), 39. doi: 10.2478/s12175-008-0110-3.

[17]

R. Lidl and G. L. Mullen, Cycle structure of Dickson permutation polynomials,, Math. J. Okayama Univ., 33 (1991), 1.

[18]

R. Lidl and G. L. Mullen, When does a polynomial over a finite field permute the elements of the field?,, Amer. Math. Monthly, 100 (1993), 71. doi: 10.2307/2324822.

[19]

R. Lidl and H. Niederreiter, "Finite Fields,'', Cambridge Univ. Press, (1997).

[20]

S. Lin and D. J. Costello, "Error Control Coding Fundamentals and Application,'' 2nd edition,, Pearson Prentice Hall, (2003).

[21]

V. Linek and Z. Jiang, Hooked $k$-extended Skolem sequences,, Discrete Math., 196 (1999), 229. doi: 10.1016/S0012-365X(98)00202-7.

[22]

B. Moision and M. Klimesh, Some observations on permutation polynomials,, JPL, ().

[23]

L. Rédei, Uber eindeuting umkehrbare polynome in endlichen kopern,, Acta Sci. Math., 11 (): 1946.

[24]

I. Rubio and C. Corrada, Cyclic decomposition of permutations of finite fields obtained using monomials,, in, (2004), 254.

[25]

I. Rubio, G. L. Mullen, C. Corrada and F. Castro, Dickson permutation polynomials that decompose in cycles of the same length,, in, (2008), 229.

[26]

J. Ryu and O. Y. Takeshita, On quadratic inverses for quadratic permutation polynomials over integer rings,, IEEE Trans. Inform. Theory, 52 (2006), 1254. doi: 10.1109/TIT.2005.864442.

[27]

A. Sakzad, D. Panario, M-R. Sadeghi and N. Eshghi, Self-inverse interleavers based on permutation functions for turbo codes,, in, (2010), 22.

[28]

A. Sakzad and M.-R. Sadeghi, On cycle-free lattices with high rate label codes,, Adv. Math. Commun., 4 (2010), 441. doi: 10.3934/amc.2010.4.441.

[29]

A. Sakzad, M-R. Sadeghi and D. Panario, Construction of turbo lattices,, in, (2010), 14.

[30]

J. Sun and O. Y. Takeshita, Interleavers for turbo codes using permutation polynomials over integer rings,, IEEE Trans. Inform. Theory, 51 (2005), 101. doi: 10.1109/TIT.2004.839478.

[31]

O. Y. Takeshita, Permutation polynomials interleavers: an algebraic geometric perspective,, IEEE Trans. Inform. Theory, 53 (2007), 2116. doi: 10.1109/TIT.2007.896870.

[32]

O. Y. Takeshita and D. J. Costello, New deterministic interleaver designs for turbo codes,, IEEE Trans. Inform. Theory, 46 (2000), 1988. doi: 10.1109/18.868474.

[33]

D. V. Truhachev, M. Lentmaier and K. S. Zigangirov, Some results concerning design and decoding of turbo-codes,, Probl. Inform. Trans., 37 (2001), 190. doi: 10.1023/A:1013821922527.

[34]

B. Vucetic, Y. Li, L. C. Perez and F. Jiang, Recent advances in turbo code design and theory,, Proc. IEEE, 95 (2007), 1323. doi: 10.1109/JPROC.2007.897975.

[1]

Nian Li, Qiaoyu Hu. A conjecture on permutation trinomials over finite fields of characteristic two. Advances in Mathematics of Communications, 2019, 13 (3) : 505-512. doi: 10.3934/amc.2019031

[2]

Stefania Fanali, Massimo Giulietti, Irene Platoni. On maximal curves over finite fields of small order. Advances in Mathematics of Communications, 2012, 6 (1) : 107-120. doi: 10.3934/amc.2012.6.107

[3]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[4]

Shengtian Yang, Thomas Honold. Good random matrices over finite fields. Advances in Mathematics of Communications, 2012, 6 (2) : 203-227. doi: 10.3934/amc.2012.6.203

[5]

Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022

[6]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[7]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[8]

Uwe Helmke, Jens Jordan, Julia Lieb. Probability estimates for reachability of linear systems defined over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 63-78. doi: 10.3934/amc.2016.10.63

[9]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[10]

Fatma-Zohra Benahmed, Kenza Guenda, Aicha Batoul, Thomas Aaron Gulliver. Some new constructions of isodual and LCD codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 281-296. doi: 10.3934/amc.2019019

[11]

Nguyen Thi Bach Kim. Finite algorithm for minimizing the product of two linear functions over a polyhedron. Journal of Industrial & Management Optimization, 2007, 3 (3) : 481-487. doi: 10.3934/jimo.2007.3.481

[12]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[13]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[14]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[15]

Marko Budišić, Stefan Siegmund, Doan Thai Son, Igor Mezić. Mesochronic classification of trajectories in incompressible 3D vector fields over finite times. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 923-958. doi: 10.3934/dcdss.2016035

[16]

Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

[17]

Josep M. Miret, Jordi Pujolàs, Anna Rio. Explicit 2-power torsion of genus 2 curves over finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 155-168. doi: 10.3934/amc.2010.4.155

[18]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[19]

Ferruh Özbudak, Burcu Gülmez Temür, Oǧuz Yayla. Further results on fibre products of Kummer covers and curves with many points over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 151-162. doi: 10.3934/amc.2016.10.151

[20]

Somphong Jitman, Ekkasit Sangwisut. The average dimension of the Hermitian hull of constacyclic codes over finite fields of square order. Advances in Mathematics of Communications, 2018, 12 (3) : 451-463. doi: 10.3934/amc.2018027

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (7)

[Back to Top]