May  2011, 5(2): 317-331. doi: 10.3934/amc.2011.5.317

Characterization of some optimal arcs

1. 

New Bulgarian University, 21 Montevideo St., 1618 Sofia, Bulgaria

2. 

Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1126 Sofia, Bulgaria

Received  May 2010 Revised  December 2010 Published  May 2011

In this paper, we prove the nonexistence of arcs with parameters $(398,101)$, $(464,117)$, and $(467,118)$ in PG$(4,4)$. The proof relies on the geometric characterization of $(117,30)$- and $(118,30)$-arcs in PG$(3,4)$. This settles the problem of finding the exact value of $n_4(5,d)$ for eight values of $d$: $297,298,347,348,349,...,352$.
Citation: Ivan Landjev, Assia Rousseva. Characterization of some optimal arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 317-331. doi: 10.3934/amc.2011.5.317
References:
[1]

S. Ball, R. Hill, I. Landjev and H. Ward, On $(q^2+q+2,q+2)$-arcs in the projective plane PG$(2,q)$,, Des. Codes Crypt., 24 (2001), 205. doi: 10.1023/A:1011260806005. Google Scholar

[2]

A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces,, Geom. Dedicata, 9 (1980), 130. doi: 10.1007/BF00181559. Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998). Google Scholar

[4]

Y. Edel and J. Bierbrauer, 41 is the larest size of a cap in PG$(4,4)$,, Des. Codes Crypt., 16 (1999), 151. doi: 10.1023/A:1008389013117. Google Scholar

[5]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Crypt., (). Google Scholar

[6]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532. doi: 10.1147/rd.45.0532. Google Scholar

[7]

N. Hamada and M. Deza, A characterization of $\{v$$\mu+1$$+\varepsilon,v$$\mu$$;t,q\}$-minihypers and its application to error-correcting codes and factorial design,, J. Statist. Plann. Inference, 22 (1989), 323. doi: 10.1016/0378-3758(89)90098-0. Google Scholar

[8]

N. Hamada and T. Helleseth, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound,, Math. Japonica, 38 (1993), 925. Google Scholar

[9]

N. Hamada and T. Maekawa, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound. II,, Math. Japonica, 46 (1997), 241. Google Scholar

[10]

R. Hill, Some results concerning linear codes and $(k,3)$-caps in three-dimensional Galois space,, Math. Proc. Cambridge Phil. Soc., 84 (1978), 191. doi: 10.1017/S0305004100055031. Google Scholar

[11]

R. Hill and P. Lizak, Extensions of linear codes,, in, (1995). Google Scholar

[12]

R. Hill and H. N. Ward, A geometric approach to classifying Griesmer codes,, Des. Codes Crypt., 44 (2007), 169. doi: 10.1007/s10623-007-9086-1. Google Scholar

[13]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition,, Oxford University Press, (1998). Google Scholar

[14]

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces,, in, (2001), 201. Google Scholar

[15]

I. Landjev, Linear codes over finite fields and finite projective geometries,, Discrete Math., 213 (2000), 211. doi: 10.1016/S0012-365X(99)00183-1. Google Scholar

[16]

I. Landjev, The geometric approach to linear codes,, in, (2001), 247. Google Scholar

[17]

I. Landjev and T. Honold, Arcs in projective Hjelmslev planes,, Discrete Math. Appl., 11 (2001), 53. doi: 10.1515/dma.2001.11.1.53. Google Scholar

[18]

I. Landjev and T. Maruta, On the minmum length of quaternary linear codes of dimension five,, Discrete Math., 202 (1999), 145. doi: 10.1016/S0012-365X(98)00354-9. Google Scholar

[19]

I. Landjev and A. Rousseva, On the existence of some optimal arcs in PG$(4,4)$,, in, (2002), 176. Google Scholar

[20]

I. Landjev and A. Rousseva, An extension theorem for arcs and linear codes,, Probl. Inf. Trans., 42 (2006), 65. doi: 10.1134/S0032946006040041. Google Scholar

[21]

I. Landjev and L. Storme, A study of $(x(q+1),x;2,q)$-minihypers,, Des. Codes Crypt., 54 (2010), 135. doi: 10.1007/s10623-009-9314-y. Google Scholar

[22]

T. Maruta, On the minimum length of $q$-ary linear codes of dimension four,, Discrete Math., 208/209 (1999), 427. doi: 10.1016/S0012-365X(99)00088-6. Google Scholar

[23]

T. Maruta, The nonexistence of some quaternary linear codes of dimension 5,, Discrete Math., 238 (2001), 99. doi: 10.1016/S0012-365X(00)00413-1. Google Scholar

[24]

, T. Maruta,, \url{http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm}, (). Google Scholar

[25]

L. Storme, J. A. Thas and S. K. J. Vereecke, New upper bounds on the sizes of caps in finite projective spaces,, J. Geometry, 73 (2002), 176. doi: 10.1007/s00022-002-8590-8. Google Scholar

[26]

H. N. Ward, Divisibility of codes meeting the Griesmer bound,, J. Combin. Theory Ser. A, 83 (1998), 79. doi: 10.1006/jcta.1997.2864. Google Scholar

show all references

References:
[1]

S. Ball, R. Hill, I. Landjev and H. Ward, On $(q^2+q+2,q+2)$-arcs in the projective plane PG$(2,q)$,, Des. Codes Crypt., 24 (2001), 205. doi: 10.1023/A:1011260806005. Google Scholar

[2]

A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces,, Geom. Dedicata, 9 (1980), 130. doi: 10.1007/BF00181559. Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998). Google Scholar

[4]

Y. Edel and J. Bierbrauer, 41 is the larest size of a cap in PG$(4,4)$,, Des. Codes Crypt., 16 (1999), 151. doi: 10.1023/A:1008389013117. Google Scholar

[5]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Crypt., (). Google Scholar

[6]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532. doi: 10.1147/rd.45.0532. Google Scholar

[7]

N. Hamada and M. Deza, A characterization of $\{v$$\mu+1$$+\varepsilon,v$$\mu$$;t,q\}$-minihypers and its application to error-correcting codes and factorial design,, J. Statist. Plann. Inference, 22 (1989), 323. doi: 10.1016/0378-3758(89)90098-0. Google Scholar

[8]

N. Hamada and T. Helleseth, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound,, Math. Japonica, 38 (1993), 925. Google Scholar

[9]

N. Hamada and T. Maekawa, A characterization of some $q$-ary codes ($q>(h-1)^2, h\geq3$) meeting the Griesmer bound. II,, Math. Japonica, 46 (1997), 241. Google Scholar

[10]

R. Hill, Some results concerning linear codes and $(k,3)$-caps in three-dimensional Galois space,, Math. Proc. Cambridge Phil. Soc., 84 (1978), 191. doi: 10.1017/S0305004100055031. Google Scholar

[11]

R. Hill and P. Lizak, Extensions of linear codes,, in, (1995). Google Scholar

[12]

R. Hill and H. N. Ward, A geometric approach to classifying Griesmer codes,, Des. Codes Crypt., 44 (2007), 169. doi: 10.1007/s10623-007-9086-1. Google Scholar

[13]

J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition,, Oxford University Press, (1998). Google Scholar

[14]

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces,, in, (2001), 201. Google Scholar

[15]

I. Landjev, Linear codes over finite fields and finite projective geometries,, Discrete Math., 213 (2000), 211. doi: 10.1016/S0012-365X(99)00183-1. Google Scholar

[16]

I. Landjev, The geometric approach to linear codes,, in, (2001), 247. Google Scholar

[17]

I. Landjev and T. Honold, Arcs in projective Hjelmslev planes,, Discrete Math. Appl., 11 (2001), 53. doi: 10.1515/dma.2001.11.1.53. Google Scholar

[18]

I. Landjev and T. Maruta, On the minmum length of quaternary linear codes of dimension five,, Discrete Math., 202 (1999), 145. doi: 10.1016/S0012-365X(98)00354-9. Google Scholar

[19]

I. Landjev and A. Rousseva, On the existence of some optimal arcs in PG$(4,4)$,, in, (2002), 176. Google Scholar

[20]

I. Landjev and A. Rousseva, An extension theorem for arcs and linear codes,, Probl. Inf. Trans., 42 (2006), 65. doi: 10.1134/S0032946006040041. Google Scholar

[21]

I. Landjev and L. Storme, A study of $(x(q+1),x;2,q)$-minihypers,, Des. Codes Crypt., 54 (2010), 135. doi: 10.1007/s10623-009-9314-y. Google Scholar

[22]

T. Maruta, On the minimum length of $q$-ary linear codes of dimension four,, Discrete Math., 208/209 (1999), 427. doi: 10.1016/S0012-365X(99)00088-6. Google Scholar

[23]

T. Maruta, The nonexistence of some quaternary linear codes of dimension 5,, Discrete Math., 238 (2001), 99. doi: 10.1016/S0012-365X(00)00413-1. Google Scholar

[24]

, T. Maruta,, \url{http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm}, (). Google Scholar

[25]

L. Storme, J. A. Thas and S. K. J. Vereecke, New upper bounds on the sizes of caps in finite projective spaces,, J. Geometry, 73 (2002), 176. doi: 10.1007/s00022-002-8590-8. Google Scholar

[26]

H. N. Ward, Divisibility of codes meeting the Griesmer bound,, J. Combin. Theory Ser. A, 83 (1998), 79. doi: 10.1006/jcta.1997.2864. Google Scholar

[1]

J. De Beule, K. Metsch, L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. Advances in Mathematics of Communications, 2008, 2 (3) : 261-272. doi: 10.3934/amc.2008.2.261

[2]

Thomas Honold, Ivan Landjev. The dual construction for arcs in projective Hjelmslev spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 11-21. doi: 10.3934/amc.2011.5.11

[3]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[4]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[5]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[6]

Christos Koukouvinos, Dimitris E. Simos. Construction of new self-dual codes over $GF(5)$ using skew-Hadamard matrices. Advances in Mathematics of Communications, 2009, 3 (3) : 251-263. doi: 10.3934/amc.2009.3.251

[7]

Ivan Landjev. On blocking sets in projective Hjelmslev planes. Advances in Mathematics of Communications, 2007, 1 (1) : 65-81. doi: 10.3934/amc.2007.1.65

[8]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[9]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[10]

Adel Alahmadi, Steven Dougherty, André Leroy, Patrick Solé. On the duality and the direction of polycyclic codes. Advances in Mathematics of Communications, 2016, 10 (4) : 921-929. doi: 10.3934/amc.2016049

[11]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[12]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[13]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[14]

Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

[15]

Peter Vandendriessche. LDPC codes associated with linear representations of geometries. Advances in Mathematics of Communications, 2010, 4 (3) : 405-417. doi: 10.3934/amc.2010.4.405

[16]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[17]

Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313

[18]

Heide Gluesing-Luerssen, Carolyn Troha. Construction of subspace codes through linkage. Advances in Mathematics of Communications, 2016, 10 (3) : 525-540. doi: 10.3934/amc.2016023

[19]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[20]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]