May  2011, 5(2): 303-308. doi: 10.3934/amc.2011.5.303

On the non-existence of sharply transitive sets of permutations in certain finite permutation groups

1. 

Institut für Mathematik, Universität Würzburg, Campus Hubland Nord, 97074 Würzburg, Germany

2. 

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

Received  April 2010 Revised  November 2010 Published  May 2011

In this short note we present a simple combinatorial trick which can be effectively applied to show the non-existence of sharply transitive sets of permutations in certain finite permutation groups.
Citation: Peter Müller, Gábor P. Nagy. On the non-existence of sharply transitive sets of permutations in certain finite permutation groups. Advances in Mathematics of Communications, 2011, 5 (2) : 303-308. doi: 10.3934/amc.2011.5.303
References:
[1]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,, J. Symbolic Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[2]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs,, in, (1989).

[3]

P. Dembowski, "Finite Geometries,'', Springer-Verlag, (1968).

[4]

P. Frankl and M. Deza, On the maximum number of permutations with given maximal or minimal distance,, J. Combin. Theory Ser. A, 22 (1977), 352. doi: 10.1016/0097-3165(77)90009-7.

[5]

GAP Group, "GAP - Groups, Algorithms, and Programming,'', University of St Andrews and RWTH Aachen, (2002).

[6]

T. Grundhöfer, The groups of projectivities of finite projective and affine planes,, in, 25 (1988), 269.

[7]

T. Grundhöfer and P. Müller, Sharply 2-transitive sets of permutations and groups of affine projectivities,, Beiträge Algebra Geom., 50 (2009), 143.

[8]

M. E. O'Nan, Sharply 2-transitive sets of permutations,, in, (1985), 1983.

[9]

J. Quistorff, A survey on packing and covering problems in the Hamming permutation space,, Electron. J. Combin., 13 (2006).

[10]

H. Tarnanen, Upper bounds on permutation codes via linear programming,, Europ. J. Combinatorics, 20 (1999), 101. doi: 10.1006/eujc.1998.0272.

show all references

References:
[1]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,, J. Symbolic Comput., 24 (1997), 235. doi: 10.1006/jsco.1996.0125.

[2]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs,, in, (1989).

[3]

P. Dembowski, "Finite Geometries,'', Springer-Verlag, (1968).

[4]

P. Frankl and M. Deza, On the maximum number of permutations with given maximal or minimal distance,, J. Combin. Theory Ser. A, 22 (1977), 352. doi: 10.1016/0097-3165(77)90009-7.

[5]

GAP Group, "GAP - Groups, Algorithms, and Programming,'', University of St Andrews and RWTH Aachen, (2002).

[6]

T. Grundhöfer, The groups of projectivities of finite projective and affine planes,, in, 25 (1988), 269.

[7]

T. Grundhöfer and P. Müller, Sharply 2-transitive sets of permutations and groups of affine projectivities,, Beiträge Algebra Geom., 50 (2009), 143.

[8]

M. E. O'Nan, Sharply 2-transitive sets of permutations,, in, (1985), 1983.

[9]

J. Quistorff, A survey on packing and covering problems in the Hamming permutation space,, Electron. J. Combin., 13 (2006).

[10]

H. Tarnanen, Upper bounds on permutation codes via linear programming,, Europ. J. Combinatorics, 20 (1999), 101. doi: 10.1006/eujc.1998.0272.

[1]

Robert F. Bailey, John N. Bray. Decoding the Mathieu group M12. Advances in Mathematics of Communications, 2007, 1 (4) : 477-487. doi: 10.3934/amc.2007.1.477

[2]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[3]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[4]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[5]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115

[6]

Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453

[7]

Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657

[8]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[9]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[10]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[11]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[12]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[13]

Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505

[14]

Sergiĭ Kolyada, Mykola Matviichuk. On extensions of transitive maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 767-777. doi: 10.3934/dcds.2011.30.767

[15]

John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743

[16]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[17]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[18]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[19]

Harish Garg, Kamal Kumar. Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2018162

[20]

Armando G. M. Neves. Upper and lower bounds on Mathieu characteristic numbers of integer orders. Communications on Pure & Applied Analysis, 2004, 3 (3) : 447-464. doi: 10.3934/cpaa.2004.3.447

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]